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ABSTRACT

A key issue in software evolution analysis is being able to compute evolutionary change

accurately and with rich semantics. This dissertation describes a mathematical framework

for enabling accurate computation of semantic evolutionary change. It is based on graphs for

representing software semantics, graph transformations for modeling evolution, and effects of

graph transformations for capturing evolutionary change.

We formulate the notions of evolution sets and the evolution distance to measure evolu-

tionary change. Then, we define an appropriate notion of optimal graph alignment to compute

evolutionary change accurately. Establishing a rigorous foundation for computing evolutionary

change is important for developing powerful automated tools for software evolution analysis.

Cost estimation, software merging, reliability analysis, clone detection, incremental testing,

validation and other software applications can benefit from precise computation of evolution-

ary change. A rigorous foundation also allows leveraging the extensive research on graph

alignments to advance software engineering.

We have created a framework for experimental evaluation of graph alignment algorithms.

The framework includes a graph testbed, an accuracy metric, and a graph alignment visualiza-

tion (GAV) mechanism. The framework is targeted at applications where a precise computation

of evolutionary change from one system to the next is needed to reveal valuable knowledge

about the system and its evolution. The accuracy metric is based on a new measure for graph

difference and a new notion of optimality of graph alignment. The metric is designed to mea-

sure the degree to which an alignment is inaccurate, that is the degree to which it reports

spurious differences. Such a metric is meaningful for estimating the efficiency of and resources

necessary for many software evolution analyses.
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The Minimal Signature Tree (MST) is introduced as a new data structure that can be con-

structed for a graph G and can be used to design efficient heuristic graph analysis algorithms.

The graphs are assumed to be attributed, directed, and acyclic. The MST is a rooted tree that

stores the minimal signatures which are defined to be sequences of labels that describe special

subgraphs in G. A minimal signature serves as an artifact to pinpoint a node of G.

The MST generalizes the notion of suffix tree from strings to graphs. If the graph G is

a string then the MST is homomorphic to the suffix tree. The MST exposes the internal

structure of a graph and makes it possible to design efficient algorithms.

A MST-based algorithm for differencing graphs G1 and G2 is presented. This algorithm

involves constructing a combined MST, called the Co-MST, that stores minimal signatures

that are common to G1 and G2. For each common minimal signature s, the node in G1 and

the node in G2 pinpointed by s are aligned. The nodes not covered by common minimal

signatures may be further aligned using an existing graph alignment technique.

We present an experimental study which includes a comparison of a MST-based graph dif-

ferencing algorithm with two other algorithms. The experiments involve large graphs extracted

from Linux, synthetic graphs reaching ten thousand nodes, variations of connectivity and the

number of distinct labels, and a priori known differences to verify the accuracy of differencing.
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CHAPTER 1. INTRODUCTION

Evolution is a critical part of the software life cycle. Several techniques and tools are being

developed to assist software engineers in maintaining and evolving large complex software

systems. A key issue in software evolution analysis is the accurate computation of evolutionary

change that occurs across different versions of software. A text-based computation of changes

is possible but primitive, and it is not an approach that lends to powerful reasoning.

It is important to develop a rigorous framework of machine-processable evolutionary change

framed with abstractions for applying powerful mathematical reasoning to uncover and harness

the knowledge that can be extracted from evolutionary change. A rigorous framework is an

important foundation for developing new powerful software engineering techniques.

For example, efficient and rigorous incremental and inductive validation techniques could

be developed where the validity of system B is implied by the known validity of system A and

an inductive reasoning based on the evolutionary change B − A. However, there are many

other applications such as cost estimation, clone detection, and software merging, where the

evolutionary change can be useful. A few examples are provided in the appendix. The systems

A and B are to be represented by appropriate graphs G1 and G2 that embody the semantics

necessary for addressing a given problem.

The evolutionary change B −A needs to be captured as a well defined and relevant graph

difference between G1 and G2. The evolutionary change can be important to several applica-

tions, for example it could be used to automate incremental audits of software [7].

This dissertation describes a mathematical framework for enabling accurate computation

of evolutionary changes in software. The applicability of graph representations is well known

in software engineering, spanning at least three decades of research from the 1979 paper on a
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software graph representation [95] to the 2007 paper on distilling evolutionary change [35].

We model evolution as graph transformations and evolutionary changes as effects of graph

transformations. We propose a definition of graph difference to capture an evolutionary change

between two versions of software. We formulate the notions of evolution sets and evolution

distance as an appropriate graph difference that captures an evolutionary change.

A graph transformation can be composed as a sequence of basic graph transformations.

Our formulation of graph difference is based on an effect of the transformation and not the

length of its compositional sequence. We show that the notion of evolution distance is different

from the well-known notion of edit distance [6, 107]. Importantly, we show that evolution sets

and the evolution distance can be computed as a particular type of optimal graph alignment.

Graphs are useful in modeling software, electrical circuits, protein structures, social net-

works, and other artifacts in science and engineering. Having created a model, graph based

methods can become powerful tools to compute differences and similarities between real-world

objects. For instance, graph models can be used instead of text to compute evolutionary

changes between two versions of software.

Graph differencing and its wide ranging applications have spawned decades of research.

Graph isomorphism, subgraph isomorphism, and other variations of the graph differencing

problems have been the subject of extensive mathematical research [43]. Graph differencing

is used in: computational biology [5], chemical structure analysis [28], pattern matching for

image analysis [20], social network evolution analysis [64], software evolution analysis [35],

VLSI circuit validation [29], and web searching [62].

Development of computationally efficient heuristic graph differencing algorithms and their

real-world applications continue to be important research − from a 1965 paper on an algorithm

implemented for matching chemical structures [28] to a 2007 paper on a tree-based technique

for source code change extraction [35].

The notions of edit distance and evolution distance are different. We will give an example

of transformations T1 and T2 from G1 to G2 such that: (a) the length of T1 is the edit

distance but the effect size of T1 is not the evolution distance, and (b) the effect size of T2 is
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the evolution distance but the length of T2 is not the edit distance.

An alignment is a one-to-one matching function f that matches a subset of nodes of G1

with a subset of nodes of G2. We will define the notion of a transformation Tf that is induced

by an alignment f . We will prove that all transformations Tf induced by an alignment have

the same effect. The graph difference with respect to f will be defined as the effect of Tf and

denoted by Diff(f). The effect size of Tf will be denoted by DS(f).

We call an alignment a minimum effect alignment if DS(f) is equal to the evolution distance

− representing the best possible case of accuracy of graph differencing. The minimum effect

alignment defines a kind of optimality for graph alignments. Typically, a heuristic graph

differencing algorithm does not find an optimal alignment, it reports spurious differences, and

the effect size of Tf is bigger than the evolution distance. The worst possible alignment is one

where the effect size of Tf is |G1| + |G2|, the sum of the cardinalities of the largest possible

sets of affected nodes, which includes all the nodes of G1 and G2.

The number of possibilities for aligning all the nodes of graph G1 and all the nodes of G2

is n! if the number of nodes in each of G1 and G2 is n. Even for n = 20, the number of

possibilities is astronomically large - a hypothetical supercomputer that considers one possi-

bility per nanosecond would require about 77 years to exhaust all possibilities. In practice,

graph differencing algorithms apply heuristics to cut down the number of matching possibilities

[29, 36, 38, 72, 78].

A framework for experimental evaluation of graph differencing algorithms is important

for many reasons. A rigorous accuracy analysis can be performed, which is needed to enable

application scientists, usually not experts in graph differencing, to select appropriate algorithms

for their work. Because of the resulting insights into how specific algorithmic strategies affect

accuracy, the accuracy analysis is valuable for tuning existing algorithms and for designing

new algorithms. By being able to measure accuracy scientifically, it can promote rigorous use

of graph differencing.

A framework for experimental evaluation of graph differencing algorithms is presented.

The framework includes a testbed, an accuracy metric, and a graph alignment visualization



www.manaraa.com

4

(GAV) mechanism. The testbed allows for controlled experimentation and analysis of graph

differencing algorithms. The accuracy metric is designed to evaluate algorithms for graph dif-

ferencing, i.e. where the difference is the focus. The graph alignment visualization mechanism

allows inspection of alignment mistakes and improvement of graph alignments. Experiments

are performed to validate the framework.

The notion of minimal signature is introduced as a constraint to reduce the number of

matching possibilities considered for a pair of graphs. A minimal signature of a graph G is a

sequence of labels that defines a unique subgraph of G and the subgraph has one sink node.

The number of matching possibilities are reduced using each minimal signature as a clue to

select respective nodes from G1 and G2 for alignment. A node u of G1 is aligned with a node v

of G2 if u and v are sinks of respective subgraphs of G1 and G2 defined by a minimal signature

common to G1 and G2. We introduce a new data structure called the Minimal Signature Tree

(MST) as an effective mechanism to store and use all minimal signatures of a graph G. We

also introduce a Combined MST (Co-MST) as a refinement of the MST to compute and store

minimal signatures common to two graphs.

The MST can be thought of as a generalization of the well-known suffix tree data structure

[105, 76, 103] for strings. We prove that the MST and the suffix tree are closely related if the

graph G is actually a string. Like the suffix tree, the MST and a Co-MST are defined to be

rooted trees. Each leaf of a suffix tree corresponds to a suffix of the string for which the suffix

tree is constructed. Each leaf of a MST corresponds to a minimal signature of the graph for

which the MST is constructed.

This dissertation includes accuracy analysis of an MST-based graph differencing algorithm

and two well-known graph differencing algorithms. The accuracy analysis includes an example

of computing evolutionary change as graph differences. The example is based on three versions

of Linux. Specifically, it is about computing the evolutionary change necessary for validation

of a locking property.
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1.1 Challenges

The challenges addressed by this dissertation are as follows:

1. It is natural to use an appropriate graph to represent software and use graph transforma-

tions to model software evolution. However, a question is which transformation to use?

A trivial transformation is to delete all the edges and the nodes of G1 (delete all the old

code) and insert all the nodes and the edges to create G2 (rewrite the code from scratch).

This transformation is not meaningful in practice to understand software evolution. One

could think of a mechanism that records every change a developer makes - however, there

are practical problems with this approach.

2. Given the graph model, the core problem is to find the minimal transformation T such

that G2 = T (G1). Immediately, the next question is minimal in what sense? Levenshtein

addressed a similar problem for strings and defined the so called Levenshtein distance as a

difference between two strings. In pattern recognition literature the Levenshtein distance

has been generalized for graphs and the resulting measure is known as the graph edit

distance. The graph edit distance is about the length of the transformation. For many

software engineering applications, a measure based on the effect and not the length of a

graph transformation is needed.

3. A graph testbed and accuracy metric can enable application scientists to select a graph

differencing algorithm by evaluating its performance. We would like to provide a simple

evaluation process. We would also like to provide a mechanism for inspecting alignments

as well as improving alignments and alignment algorithms.

4. The suffix tree has become central to bioinformatics applications. It is very useful for

designing efficient algorithms for strings. Exact string matching, constant-time Lowest

Common Ancestor Retrieval, and a variety of other efficient string alignment algorithms

have been designed based on the suffix tree. Since a string is a special case of a graph, a

good question is whether it is possible to generalize the suffix tree from strings to graphs

and can a generalization be used to design efficient graph algorithms?
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1.2 Contributions

The contributions in this dissertation are as follows:

1. A formal graph-based model for computing evolutionary changes in software. A key

idea is a novel definition of graph difference as a minimal effect of graph transformation,

minimal over all possible transformations from G1 to G2 - the two graphs that represent

system S1 and its evolved version S2. The minimality of the effect represents an im-

portant attribute of the evolution between two systems represented as graphs. A sound

foundation for the new definition is established by proving:

(a) All graph transformations induced by a graph alignment between G1 and G2 have

the same effect.

(b) A characterization of the optimal graph alignment (called the maximum Boundary

Edge Preserving (BEP) alignment) that induces transformations with the smallest

effect.

(c) The relationship between the maximum BEP alignment and the well-known align-

ment called the Maximum Common Induced Subgraph (MCIS) preserving align-

ment.

2. An accuracy metric, testbed, and Graph Alignment Visualization (GAV) mechanism for

performing accuracy analysis of graph differencing algorithms. This includes:

(a) A metric to evaluate the accuracy of a graph differencing algorithm. The metric

is based on the above notion of graph difference and the optimal BEP alignment.

It is scaled so that 100% accuracy given for the minimal graph difference given by

the maximum BEP alignment and 0% accuracy for the trivial transformation of

deleting G1 and creating G2 from scratch.

(b) A testbed for comparing the performance of graph differencing algorithms. The

testbed enables generation of graphs with thousands of nodes and specified proper-

ties and also transformations of graphs with specified effects. The testing proceeds
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by generating a graph G1 and a transform G2 of G1. The effect of the transfor-

mation is a priori known from the generation process. The difference size reported

by a graph differencing algorithm is compared to the known difference size and the

accuracy is computed using the above metric.

(c) A Graph Alignment Visualization (GAV) mechanism to visualize and improve the

alignment that an algorithm finds to compute the graph difference. The GAV

mechanism is important to gain insight into where the alignment heuristics used by

an algorithm fail. It enabled us to improve the algorithm we designed. Without

a GAV mechanism, it would be very cumbersome to inspect results of test cases

involving graphs with thousands of nodes.

3. A new data structure called the Minimal Signature Tree (MST) as a generalization of

the suffix tree and a MST based graph differencing algorithm. This includes:

(a) The notion of Minimal Signatures as a mechanism to characterize nodes in a graph,

assumed to be attributed, directed, and acyclic.

(b) The MST as a new data structure for designing efficient graph algorithms.

(c) A proof that the MST is homomorphic to the suffix tree if G is a string - thus

showing that the MST is a proper generalization of the suffix tree.

(d) A notion of a Co-MST, a data structure that combines the MST for two graphs

and a graph differencing algorithm based on the Co-MST. The Co-MST allows

optimizations for differencing graphs without computing all the minimal signatures.

(e) Experimental study of a MST-based algorithm with two well-known graph differ-

encing algorithms from literature: the 2DOM - an algorithm recommended by a

survey article, and the Gemini - a proprietary version of the algorithm is used in

industry to compare VLSI circuits. Based on the algorithmic complexity of the un-

derlying heuristics it is clear that 2DOM and Gemini are faster than the MST-based

algorithm; so, the point of the study is to evaluate the accuracy. We observed that

the accuracy of the MST-based algorithm is nearly optimal in all our experiments
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while for significant parametric ranges (typifying the graph properties) the Gemini

and 2DOM algorithms showed very poor accuracy.

1.3 Organization

This dissertation is organized as follows: Chapter 2 reviews the related literature. Chap-

ter 3 formulates a notion of graph difference for computing evolutionary change based on the

effect of a transformation, defines a notion of optimal alignment, compares our notion of opti-

mality of alignment to other notions of optimality, and proves some properties of our notion.

Chapter 4 describes a testbed, defines an accuracy metric for evaluating alignment algorithms

for computing evolutionary change, and a graph alignment visualization (GAV) mechanism for

improving alignments and gaining insights into the performance of an algorithm. Chapter 5

introduces the notions of Minimal Signature, Minimal Signature Tree, and gives a MST-based

alignment algorithm. Chapter 6 describes the use of our methodology to evaluate a MST-based

algorithm and two well-known graph alignment algorithms. Chapter 7 concludes and discusses

possible future work. The Appendix illustrates a few examples where evolutionary change is

useful for software evolution analyses.
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CHAPTER 2. RELATED WORK

2.1 Notions of Graph Differences

The pattern matching literature is richly developed with a spectrum of notions for graph

difference and graph differencing algorithms for image analysis [10, 16, 31, 33, 96, 101, 102].

Zager [106] provides a classification of various notions of graph difference (or similarity) [16]

as a spectrum with the graph isomorphism at one end and the statistical notions of difference

at the other end.

The earliest reported work is by Levenshtein in 1966 [68]. The so-called Levenshtein dis-

tance is defined in the context of strings, a special case of graphs. Different notions of edit

distances for trees (another special case of graphs) are surveyed in a 2005 article [6].

We will discuss edit distance with length of the transformation as the cost function. It is

possible to define edit distance with different cost functions. In a 2007 article [83], automatic

learning of cost functions for graph edit distance is discussed.

The papers [8, 9, 12, 13, 83] discuss and prove relationships between notions of graph dif-

ferences. A relation between graph edit distance and the maximum common induced subgraph

is reported in [8].

2.2 Optimality of Graph Alignment

Precise computation of differences requires finding a graph alignment - a one-to-one cor-

respondence between a subset of the nodes of one graph and a subset of the nodes of an-

other graph. Different notions of optimality of graph alignment are discussed in the literature

[10, 28, 69, 77, 101, 102]. The edit distance [102] is one such notion of optimality based on
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the minimality of the length of the transformation induced by an alignment. Optimal graph

alignment is known to be a hard problem [10, 21, 37, 92].

2.3 Graph Differencing Algorithms

As a practical alternative to computing optimal alignments, heuristic graph differencing

algorithms have been designed for many applications including pattern recognition [20], image

analysis [3], chemical analysis [28, 90], bioinformatics [5], data management [19], VLSI appli-

cations [1], software engineering applications [24, 54], and other applications [18, 46, 62]. The

earliest paper on computer implemented graph alignment we could find dates back to 1964

[104]. The papers [4, 14, 20, 29, 36, 38, 49, 61, 63, 66, 78, 80, 88, 89, 91, 100] explore and

use heuristic matching techniques. The papers [25, 26, 47, 56, 80] describe heuristic matching

techniques for the special case of strings based on the suffix tree data structure [76, 103, 105].

The suffix tree is used in many efficient string algorithms.

2.4 Analysis of Differencing Algorithms

The performance of graph differencing algorithms is data dependent. For instance, match-

ing becomes easier with unique node labels and it helps accuracy. However, unique labels

are not always possible without losing the semantics of the application. For example the case

studies reported in [35]. Their case studies involve trees, a simpler case of graphs. With their

change distilling algorithm, they report a significant improvement over an earlier algorithm

[18], however, the mean error is still 34%.

The reported algorithm [35] finds changes according to basic tree edit operations of insert,

delete, move, or update of tree nodes. The algorithm extracts changes by finding a match

between the nodes of two abstract syntax trees. The accuracy is measured with respect to a

benchmark of 1064 manually classified changes they have created using open source projects.

To analyze the performance of alignment algorithms, the papers [40, 41, 42, 73, 71, 70,

60, 99, 108] prove that optimal alignments can be computed for special classes of graphs in

polynomial time; the papers [21, 30, 42, 58] analyze the complexity of approximating optimal
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graph alignments; the papers [11, 86, 57, 45, 22] describe experimental comparisons of graph

alignment algorithms.

A performance comparison of five graph isomorphism algorithms is reported in [86]; it

compares the execution times. A graph isomorphism algorithm reports whether a given pair

of graphs is isomorphic or not; it does not compute the difference. The paper [11] reports

a comparison of the speed of two exact maximum common induced subgraph algorithms on

randomly connected graphs with up to 30 nodes.

The paper [57] provides a qualitative comparison of the accuracy of attributed graph match-

ing algorithms for computer vision. Using the number of nodes that are aligned as a metric

does not account for connectivity changes.

Other experimental evaluations in literature have assigned arbitrary unique identifiers to

nodes before graph transformation and use the number of nodes aligned to nodes with the same

identifier to measure accuracy [52]. However, arbitrary identifiers do not contain semantic

information and experimental evaluations that use arbitrary identifiers do not account for

attribute or connectivity changes and can introduce spurious differences when the graphs have

symmetry.

Another common approach [63] is manual inspection of accuracy of graph differencing, an

approach which is prone to human errors and inconsistency and not scalable to large graphs.

Furthermore, it may be difficult in practice to get a sampling of graphs representative of a

particular domain by which to experimentally compare algorithms.

2.5 Controlled Experimentation with Graphs

Given the importance of the use of graphs as semantic representations in different applica-

tions, it is valuable to have a testbed to perform experimental studies to evaluate and improve

graph algorithms. The Lawrence Livermore National Laboratory (LLNL) has invested more

than a decade in inference methodologies for semantic graph analysis [67]. They have built

a testbed to serve as a companion to analysts for the rapid prototyping of graph-based algo-

rithms.
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A testbed for controlled experiments can be useful to compare graph differencing algo-

rithms. A better understanding of the performance of graph differencing algorithms can be

gained by controlling the characteristics of the graphs and the differences between the graphs.

The papers [15, 85, 97] describe graphs for evaluation of graph matching algorithms for image

analysis.

The papers [2, 23, 27, 87, 98] describe techniques for generating random graphs with spec-

ified characteristics. The notion of a random graph originated in a 1947 paper of Erdos [53].

The graph-tool [23] supports generation of random directed graphs with arbitrary degree distri-

butions, based on the configurational model, with the addition of arbitrary degree correlations.

The Barabasi graph generator is a graph generator based on the Barabasi model which is

designed to create graphs which possess power laws associated with the outdegree of the nodes

[2, 27]. The paper [97] presents a large database of synthetically generated graphs, especially

devised for the benchmarking of graph matching algorithms, in particular exact isomorphism

and sub-graph isomorphism.
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CHAPTER 3. EVOLUTIONARY CHANGE

Let S1 be the base system represented by the graph G1, and let S2 be the new system

evolved from S1. Let S2 be represented by the graph G2. One of our goals is a rigorous and

machine-processable definition of evolutionary change.

It is natural to think of evolutionary change as the difference between graphs G1 and G2.

However, as the following simple example shows, the graph difference is not uniquely defined.

Consider the graphs G1 and G2 shown in Figure 3.1. One matching where nodes A (numbered

2) and C of G1 are matched with the nodes A and C of G2, leads to {A (numbered 3), B, D}

for G1 and {B} for G2 as the difference sets.

It is the difference according to the matching because two nodes from G1 are matched with

two nodes of G2, the remaining nodes in G1 A (numbered 3), B, and D are deleted from G1,

and the node B is inserted in G2. Another matching where nodes A (numbered 3) and B of

G1 are matched with the nodes A and B of G2, leads to {A (numbered 2), C, D} for G1 and

{C} for G2 as the difference sets.

As another approach, consider transforming G1 to G2. Let T denote the transformation

from G1 to G2, so that G2 = T (G1). For example, one transformation is to delete the edges

e(1, 2), e(2, 3) and e(3, 4) delete the nodes 2 and 4, and insert a new edge e(3, 1). The notation

e(u, v) or (u,v) denotes an edge between nodes u and v.

A BA

D

C
1

2 3 5

4

(a) Graph G1

A

BC

(b) Graph G2

Figure 3.1 Differencing graphs G1 & G2
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In the above example, T is a sequence of six basic transformations: three edge deletions,

two node deletions, and one edge insertion. In literature edit distance [102] is used as a measure

of graph difference. The edit distance is defined as the minimum length of T over all possible

transformations from G1 to G2.

For this purpose, T is expressed as a sequence of basic transformations and the length of

T is the size of the sequence. This edit distance is a generalization of the Levenshtein distance

[68] defined for strings. The definition of edit distance assumes that the transformations are

permissible, that is, all edges connected to a node must be deleted before the node can be

deleted. The assumption is necessary to ensure that the result continues to be a graph after

application of each basic transformation from a sequence that defines T . The edit distance, is

used in the literature to measure semantic distance between two versions of software [35, 17, 50].

The edit distance is not uniquely defined, it depends on the selection of basic transforma-

tions. Suppose the update (changing the attribute of a node) is included as a basic trans-

formation. Then, the transformation T could also be defined as: delete the edges e(3, 4) and

e(3, 5), delete the nodes 4 and 5, and update the node 3 by changing its attribute to B. With

the new sequence of transformations the edit distance is 5 instead of 6.

In this chapter we will define a different measure of graph difference, one that is based on

the effect as opposed to the length of a sequence of transformations. We will describe how to

compute evolutionary change via graph alignment. Alignment algorithms from literature as

well as the graph alignment visualization mechanism we describe in a later chapter can be used

to compute evolutionary change. We introduce a mathematical foundation for evolutionary

change.

3.1 Evolutionary Change as Effects of Graph Transformations

Definition 1. Given a set A of attributes, an attributed graph is a triple G = (N, E,L)

where N is a set of nodes, E is a relation N ×N that describes the directed edges of G, and

L : N → A is a labeling function of the nodes. Attributed graphs may have a labels associated

with their edges, but for simplicity we omit edge labels from the discussion.



www.manaraa.com

15

Attributed graphs serve as useful representations in many applications [96, 57]. Attributes

represent properties or types of nodes. For example, in chemical structures the nodes represent

atoms and the attributes such as C and H are used to denote the different types of atoms.

Attributes can be simple labels or more complex artifacts, for example, a vector of parameter

values for a control block in Simulink model [74]. Examples of attributed graphs include graph

representations used for Abstract Syntax Tree [84], call graphs [95], program dependence graph

[34], Simulink models [74], UML models and architectural models [32]. For the remainder of

this paper, we shorten the term attributed graph to graph.

3.1.1 Graph Transformations

Evolution can be modeled as a graph transformation T , so that G2 = T (G1). We consider

five types of basic transformations: edge insertion, edge deletion, node insertion, node deletion,

and attribute change. Let t(G) denote a basic transformation t applied to graph G. Let

G1 = (N1, E1, L1) and G2 = (N2, E2, L2) be graphs defined over a set of attributes A such

that G2 = T (G1).

The evolution from software S1 to S2 occurs through additions, deletions, and modifica-

tions of software artifacts represented as nodes and the dependence between them as edges.

Thus, software evolution can be represented by a sequence T = (t1, t2, ..., tk) of basic transfor-

mation and we have G2 = T (G1) where the graphs G1 and G2 represent software S1 and S2

respectively. The five types of basic transformations are defined as follows.

Edge Insertion: Insert a new edge from node u to node v - that is N2 = N1, E2 =

(E1∪ (u, v)), L2 = L1. An edge insertion transformation t will be shown as t = e+(u, v). The

precondition is u, v ∈ N1 and (u, v) /∈ E1.

Edge Deletion: Delete an edge from node u to node v - that is N2 = N1, E2 = (E1−(u, v)),

L2 = L1. An edge deletion transformation t will be shown as t = e−(u, v). The precondition

is (u, v) ∈ E1.

Node Insertion: Insert a new node v with attribute a - that is N2 = N1 ∪ v, E2 = E1,

L2 = L1 ∪ (v, a). A node insertion transformation t will be shown as t = n+(v, a). The
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precondition is node v /∈ N1 and an attribute a ∈ A.

Node Deletion: Delete a node v - that is N2 = N1−{v}, E2 = E1, L2 = L1∩ (N2×A). A

node deletion transformation t will be shown as t = n−(v). The precondition is that the node

v belongs to G1 and it does not have any connecting edges in G1 - that is E1∩ ((N1×{v})∪

({v} ×N1)) = ∅.

Attribute Change: Change the attribute of a node v to a new attribute a - that is N2 = N1,

E2 = E1, and L2 = (L1 ∩ ((N1 − {v}) × A)) ∪ (v, a). An attribute change transformation t

will be shown as t = nx(v, a). The precondition is node v ∈ N1, a ∈ A, and the attribute of v

in G1 is not a.

3.1.2 Evolution Sets and Evolution Distance

We define the effect (Effect(T )) of a transformation T , the size of the effect (ES(T ), the

sets N1D(T ), N2I(T ), N1X(T ), and N2X(T ) as follows.

Effect(T ) = (EF1, EF2)

EF1 = N1D(T ) ∪N1X(T )

EF2 = N2I(T ) ∪N2X(T )

ES(T ) = |EF1|+ |EF2|

= |N1D(T )|+ |N1X(T )|+

|N2I(T )|+ |N2X(T )|

Set of Deleted Nodes (N1D(T )): It is the subset of nodes u belonging to G1 where u is

deleted by the transformation T .

Set of Inserted Nodes (N2I(T )): It is the subset of nodes v belonging to G2 where v is

inserted by the transformation T .
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Figure 3.2 Abstract Syntax Trees G1 & G2

Set of Changed Nodes in G1 (N1X(T )): It is the subset of nodes u belonging to G1 where

u is not a deleted node, but it is a node changed by the transformation T . A node u in G1

is said to be changed if either T changes the attribute of u or T deletes or inserts an edge

connected to u.

Set of Changed Nodes in G2 (N2X(T )): It is the subset of nodes v belonging to G2 where

v is not a newly inserted node, but it is a node changed by the transformation T . A node v in

G2 is said to be changed if either T has changed the attribute of v or T has deleted or inserted

an edge connected to v.

There is a one-to-one correspondence between the nodes in N1X(T ) and the nodes in

N2X(T ) and thus |N1X(T )| = |N2X(T )|.

We give an example to illustrate a graph transformation, its effect, the size of the effect,

and the length of the transformation. The graph representation used in the example is the

abstract syntax trees (ASTs). The Figure 3.2(a) and Figure 3.2(b) give ASTs for two versions

of software. We have numbered the nodes in each graph for the convenience of specifying a

transformation. The transformation T that changes the first AST into the second AST is given

by T = {n+(24, A), n+(25, B), e+(20, 24), e+(20, 25), nx(20,−)}. The nodes and edges that

were created and the node whose attribute was changed are highlighted in the figures. The

effect (EF1, EF2) is given by EF1 = {20} for G1, EF2 = {20, 24, 25} for G2, ES(T ) = 1+3

= 4, and Length(T ) = 5.
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Let systems A and B be represented by graphs G1 and G2. We are interested in an

appropriate notion of graph difference to represent the evolutionary change from A to B. To

measure evolutionary change, it is natural to think of defining the graph difference with respect

to a graph transformation. However, there are many transformations T such that G2 = T (G1).

For example, a trivial transformation from G1 to G2 is deleting all edges and nodes of G1 and

then inserting new nodes and edges to create G2. An interesting transformation T is one that

is minimal in some well defined way.

In literature edit distance [8, 6, 82, 55, 94] is used, it incorporates a notion of minimality

defined as the minimum length of T over all possible transformations from G1 to G2. For this

purpose, T is expressed as a sequence of basic transformations and the length of T is the size

of the sequence. Our notion of minimality of graph difference is defined based on the effect

and not the length of a transformation.

We now propose a new notion of graph difference as a pair of evolution sets. It is based on

the effect and not the length of a transformation.

Definition 2. The evolution distance between G1 and G2 is defined to be the smallest ES(T )

over all transformations T from G1 to G2. We will call a transformation T a minimum effect

transformation if ES(T ) is equal to the evolution distance. Given graphs G1 and G2, a pair of

evolution sets is defined to be Effect(T ) given by a minimum effect transformation.

The edit distance and the evolution distance are different. We will give an example of

graphs G1 and G2 and transformations T1 and T2 between them such that: (a) the length

of T1 is the edit distance but ES(T1) is not the evolution distance, and (b) ES(T2) is the

evolution distance but the length of T2 is not the edit distance.

In the next section, we will describe the computation of evolutionary change via graph

alignment.

3.2 Computing Evolutionary Change via Graph Alignment

To be able to apply the definition of minimum effect transformation, we must be able to

produce a transformation from G1 to G2 with the smallest size effect. It is not practical to
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assume that a precise record of changes is kept as software evolves. Moreover, it is not obvious

how to use such a record to construct a minimum effect transformation.

So far, we have used the notion of the effect of graph transformation to define a measure for

evolutionary change. We will now point to a relationship between graph transformation and

graph alignment. This relationship allows leveraging the extensive research on graph alignment

algorithms to compute evolutionary change accurately. This relationship also allows us to

leverage a graph alignment visualization tool to improve alignments for finding evolutionary

change.

A graph alignment is a one-to-one matching function f that matches a subset of nodes of

G1 with G2. We will define a notion of a transformation Tf that is induced by an alignment

f . We will prove that all transformations Tf induced by an alignment have the same effect.

Efficient graph alignment has been a subject of intense research dating back to a com-

puter implemented method for matching chemical structures [28]. Existing knowledge about

graph alignments can be leveraged to develop accurate and efficient techniques to compute

evolutionary change.

3.2.1 From Alignment to Transformation

Definition 3. Let G1 = (N1, E1, L1) and G2 = (N2, E2, L2) be two graphs. Formally, a

graph alignment between G1 and G2 is a bijective function f from a subset M1 of N1 to a

subset M2 of N2

An alignment f is said to preserve an edge e1 between nodes u and v of G1 if the nodes

f(u) and f(v) of G2 also have an edge e2 between them. We say that the edge e1 is preserved

by f and mapped to the edge e2. If the graphs have directed edges, then preserving an edge

includes preserving also the direction of the edge.

An alignment f is said to preserve an attribute of a node u of G1 if u and f(u) have the

same attribute. Let f be an alignment. Let H1 and H2 be the subgraphs of G1 and G2

respectively such that the nodes of H1 belong to the domain of f and the nodes of H2 belong

to the co-domain of f .
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Figure 3.3 Alignment and induced transformation

The alignment is called an isomorphism between H1 and H2, if: (a) u belongs to H1 if

and only if f(u) belongs to H2, (b) for all nodes u belonging to H1, u and f(u) have the

same attribute, (c) an edge (u,v) belongs to H1 if and only if the edge (f(u),f(v)) belongs to

H2. Note that the isomorphism preserves edges and attributes. The pair (H1, H2) is called

an isomorphic pair of subgraphs with respect to the alignment f .

Definition 4. Let f be an alignment from G1 to G2. Let D1 be the subset of edges of G1

preserved by f and mapped to the subset D2 of edges of G2, a transformation T is said to be

induced by f if after identifying each node u of M1 with the node f(u) of M2, the following

holds: (a) T deletes the set of nodes N1−M1, (b) T inserts the set of nodes N2−M2, (c) T

deletes the set of edges E1−D1 from G1 and inserts the new set of edges E2−D2 into G2,

and (d) T changes the attribute of node u of M1 to the attribute of the node f(u) of M2 if u

and f(u) have different attributes. Denote by Tf a transformation induced by f .

In the section on mathematical foundation, it is proved that Effect(Tf ) is the same for all

transformations Tf induced by an alignment f .

Transformations T1 and T2 induced by an alignment f are permutations of one another

when written as a sequence of basic transformations. For example, consider the alignment

shown in Figure 3.3. We have numbered the nodes in each graph for the convenience of

specifying a transformation.

One transformation induced by the alignment is T1 = {e−(4, 7), nx(10, J), nx(7, J),
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Figure 3.4 Two Graph Alignments f1 and f2

n+(12, F ), e+(4, 12), e+(3, 12), e+(12, 7)}. The nodes and edges transformed by T1 are

highlighted in the figure. Another transformation induced by the same alignment is T2 =

{n+(12, F ), e+(3, 12), nx(10, J), e−(4, 7), e+(12, 7), nx(7, J), e+(4, 12)}.

3.2.2 Edit Distance and Evolution Distance are Different

The following example includes two alignments f1 and f2 and transformations T1 and

T2 induced by these alignments. The example shows that: (a) the length of T1 is the edit

distance but ES(T1) is not the evolution distance, and (b) ES(T2) is the evolution distance

but the length of T2 is not the edit distance. The two alignments are shown in Figure 3.4(a)

and Figure 3.4(b). It can be checked that ES(T1) = 8, Length(T1) = 5, and ES(T2) = 10,

Length(T2) = 3, the evolution distance is 8 and the edit distance is 3.

3.2.3 From Transformation to Alignment

In cases where an evolutionary path is known, the knowledge of evolutionary path can be

used to do a graph alignment. For example, an evolutionary path may be a known sequence of

software transformations from one version to another, and its knowledge can be used to align

graphs of the two versions of software.

Let G1 = (N1, E1, L1) and G2 = (N2, E2, L2) be two graphs. Let T be a transformation

from G1 to G2. Let M1 = N1 - N1D(T ) and M2 = N2 - N2I(T ). Note that there is a
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one-to-one function f between the nodes in M1 with nodes in M2 because these are exactly

the nodes retained (not deleted or inserted) by the transformation T . The function f is defined

to be the alignment induced by the transformation T . We will use the notation fT to denote

an alignment induced by T .

3.3 A Mathematical Foundation for Evolutionary Change

In this section, the graph difference with respect to an alignment f will be defined as

Effect(Tf ) and denoted by Diff(f). The size of the effect ES(Tf ) will be denoted by DS(f).

Because all transformations Tf induced by an alignment f have the same effect, Diff(f) and

DS(f) are well defined and not dependent on a particular transformation Tf .

We will build on the relationship between graph transformation and graph alignment.

Different notions of optimality of graph alignment are defined in the literature [106, 6]. We

will introduce the notion of minimum effect graph alignment as an optimal alignment that

produces a pair of evolution sets as the graph difference. Thus, a minimal effect of a graph

transformation or equivalently graph difference with respect to an optimal graph alignment

are equivalent.

We will give examples to illustrate the difference between notions of optimality of differ-

ences.

We will prove the following two important claims:

1. All transformations Tf induced by an alignment f have the same effect.

2. The minimum effect optimality and the maximum BEP optimality are equivalent.

For the proofs we introduce the notion of boundary edge preserving (BEP) pairs of sub-

graphs. The BEP pair is uniquely defined for an alignment and its definition does not involve

transformations.

We now define a new notion of optimality of alignment.

Definition 5. A graph alignment f is defined to be a minimum effect graph alignment if DS(f)

is equal to the evolution distance.
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We will use the following terminology. The node cardinality of a graph G is the number of

nodes and the edge cardinality is the number of edges. We will denote the node cardinality of

a graph G by |G|.

3.3.1 An Intrinsic Property of An Alignment

Earlier we have defined the notion of isomorphic pair (H1, H2) of subgraphs with respect

to an alignment f from G1 to G2. Now we define the notion of induced isomorphic pair (H1,

H2) of subgraphs with respect to an alignment f .

A subgraph H of G is an induced subgraph if and only if every edge e(x, y) of G belongs to

H if the nodes x and y belong to H.

Note the difference between subgraph and induced subgraph. In case of a subgraph H,

nodes x and y can belong to H but the edge e(x, y) in G may not belong to H.

Given an alignment f from G1 to G2, a pair (H1, H2) is an induced isomorphic pair of

subgraphs with respect to f if and only if H1 and H2 are induced subgraphs of G1 and G2

respectively and the restriction of f to H1, to be denoted by f̄ , is an isomorphism from H1

to H2.

Note that since H1 and H2 are isomorphic, they have the same cardinality, that is |H1| =

|H2|. We will call this number the node cardinality of the induced subgraph pair.

We call an edge e(x, y) a boundary edge of a subgraph H if either the node x or y, but

not both, belongs to H. Given an alignment f from G1 to G2, an induced isomorphic pair

of subgraphs (H1, H2) is said to be a BEP pair if and only if the following holds e(x, y) is a

boundary edge of H1 if and only if e(f(x), f(y)) is a boundary edge of H2.

Definition 6. Given an alignment f , the BEP pair of the alignment f is defined to be the

pair with the largest node cardinality over all BEP pairs induced by f . The BEP pair of f will

be denoted by (H1(f), H2(f)).

An important observation, the BEP pair (H1(f),H2(f)) is uniquely defined for an align-

ment f . This is because of the closure property of the BEP pairs with respect to the set union,
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that is, if (H11, H12) and (H21, H22) are two BEP pairs with respect to an alignment f then

(H11 ∪H21, H12 ∪H22) is also a BEP pair for the alignment f .

The next theorem shows that the effect Effect(Tf ) is the same for all induced transforma-

tions Tf and it can be defined intrinsically by the BEP pair of f .

Theorem 3.3.1. Let f be an alignment from G1 to G2 and let (H1(f), H2(f)) be its BEP

pair of subgraphs. Let M1 and M2 be the domain and co-domain of f respectively. Then,

Effect(Tf ) = (EF1, EF2) = (N1D(Tf ) + N1X(Tf ), N2I(Tf ) + N2X(Tf )) is the same for all

induced transformations Tf , and it is uniquely defined as follows:

N1D(Tf ) = N1−M1

N2I(Tf ) = N2−M2

N1X(Tf ) = M1−H1(f)

N2X(Tf ) = M2−H2(f)

Proof. The definitions of sets N1D(Tf ) and N2I(Tf ) are already independent of the trans-

formation Tf because the sets N1, N2, M1, and M2 depend only on f and not a particular

Tf .

In the following proof, we will use the notation H1 and H2 for H1(f) and H2(f). The

notation + is used for a union of disjoint sets. The notation − is used for difference of sets.

For example, M1−H1(f) is the set of nodes in M1 that are not in H1(f).

First, we will show that M1−H1 ⊆ N1X(Tf ) and M2−H2 ⊆ N2X(Tf ). Let u be a node

in M1 − H1. Since H1 and H2 are isomorphic and f is a bijection from M1 to M2, f(u)

belongs to M2 − H2. Then, u and f(u) must have either different connectivity or different

attributes and thus u belongs to N1X(Tf ) and f(u) belongs to N2X(Tf ). If not, u can be

added to H1 to create a bigger BEP pair which contradicts the definition of the BEP pair.

Next, we will show that N1X(Tf ) ⊆M1−H1 and N2X(Tf ) ⊆M2−H2. Let u be a node

in N1X(Tf ). By definition of the induced transformation u belongs to M1. Since u belongs

to N1X(Tf ), u and f(u) must have either different connectivity or different attributes. Thus,
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u cannot belong to H1 by definition of the BEP pair. So, u belongs to M1 −H1. Note that

f(u) belongs to M2 and u does not belongs to H1 implies that f(u) does not belong to H2,

So, f(u) belongs to M2−H2. This completes the proof.

The above theorem shows that the sets N1D(Tf ), N2I(Tf ), N1X(Tf ), and N2X(Tf ) are

dependent only on the alignment f and not the particular induced transformation Tf . In the

rest of the paper, we will use a simplified notation N1D(f), N2I(f), N1X(f), and N2X(f)

by not mentioning the induced transformation. We call these the graph difference sets with

respect to the alignment f .

Definition 7. Define the graph difference Diff(f) with respect to f as Effect(Tf ). Define the

graph difference size DS(f) to be ES(Tf ).

Note that dropping the reference to transformation in the notation Diff(f) and DS(f) is

justified because, as proved in the above theorem, the effect is the same with respect to every

transformation induced by f .

3.3.2 Examples: Different Notions of Optimality

We give examples with graphs G1 and G2 to show that the notion of minimum effect

optimality introduced in this dissertation is different from the edit distance optimality [6],

the maximum common induced subgraph (MCIS) optimality [8], and the maximum common

subgraph (MCS) optimality [77].

As defined earlier, a minimum effect optimal alignment is an alignment f with the smallest

size effect of the induced transformation Tf over all alignments f from G1 to G2. An edit

distance optimal alignment is an alignment f such that the length of the induced transformation

Tf is the smallest over alignments f from G1 to G2. The notions of MCIS and MCS optimal

alignments are defined as follows.

Definition 8. An alignment f is defined to be MCIS optimal if an induced isomorphic pair of

subgraphs with respect to f has the largest node cardinality over all alignments from G1 to G2.



www.manaraa.com

26

Definition 9. An alignment f is defined to be MCS optimal if an isomorphic pair of subgraphs

with respect to f has the largest edge cardinality over all alignments from G1 to G2.

The edit distance is 6 between the graphs G1 and G2 shown Figure 3.5. In the following

examples we consider three alignments f1, f2, and f3. The alignment f1 is minimum effect

optimal but it is not optimal with respect to edit distance. The alignments f2 and f3 are

optimal with respect to edit distance but they are not minimum effect optimal. This goes to

show that the minimum effect optimality is different from the edit distance optimality.

Example 1: Minimum Effect Optimality vs. MCIS optimality

The graphs G1 and G2 are shown in Figure 3.5. We describe each alignment as a subset

of G1×G2, where pairs represent aligned nodes.

f1 = {(1, 2), (5, 3)} is a minimum effect optimal alignment. f1 is not a MCIS optimal

alignment.

f2 = {(1, 1), (2, 2), (3, 3)} is a MCIS optimal alignment but it is not minimum effect optimal.

The difference sets for f1 are N1D = {2, 3, 4}, N1X = {1}, N2X = {2}, and N2I = {1}.

(EF1, EF2) = ((1, 2, 3, 4), (1, 2)) is a pair of evolution sets. The evolution distance is 6.

The alignment f2 induces the pair (H1, H2) of isomorphic subgraphs with the maximum

node cardinality. For H1, the node set is {1, 2, 3} and the edge set is {(1, 2), (2, 3)}. For H2,

the node set is {1, 2, 3} and the edge set is {(1, 2), (2, 3)}.

The graph difference DS(f2) is equal to 8, the difference includes all the nodes of G1, G2.

The edit distance is 6 with respect to f2.

Example 2: Minimum Effect Optimality vs. MCS Optimality

The graphs G1 and G2 are shown Figure 3.5. We describe each alignment as a subset of

G1×G2, where pairs represent aligned nodes.

f1 = {(1, 2), (5, 3)}, as before, is a minimum effect optimal alignment. f1 is not a MCS op-

timal alignment. f3 = {(1, 1), (2, 2), (4, 4)} is a MCS optimal alignment but it is not minimum

effect optimal.

The alignment f3 gives the pair (H1, H2) of isomorphic subgraphs with the maximum
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Figure 3.5 Example of directed labeled graphs where minimum effect align-
ments are distinct from MCIS, MCS alignments

edge cardinality. For H1, the node set is {1, 2, 4} and the edge set is {(1, 2), (2, 4)}. For H2,

the node set is {1, 2, 3} and the edge set is {(1, 2), (2, 3)}.

The graph difference size DS(f3) is equal to 8, the difference includes all the nodes of G1,

G2. The edit distance is 6 with respect to f3.

3.3.3 Equivalence of Two Notions of Optimal Alignment

We have defined the notion of minimum effect alignment as an optimal alignment for

which DS(f) is equal to the evolution distance. We will now introduce a new notion of optimal

alignment, called the maximum BEP alignment, which can be defined intrinsically with respect

to graphs G1 and G2 without involving transformations. We will show that minimum effect

optimality is in fact equivalent to this intrinsic notion of maximum BEP optimality.

One well-known notion of optimality is the so called maximum common induced subgraph

(MCIS) optimality [69]. An alignment f is defined to be MCIS optimal if it produces an

induced isomorphic pair of subgraphs with the largest node cardinality over all alignments

from G1 to G2.

We now define the maximum BEP alignment as a refinement of MCIS optimality.

Definition 10. An alignment f is defined to be maximum BEP optimal if the BEP pair

(H1(f), H2(f)) is the pair with largest node cardinality over all alignments from G1 to G2.

The next theorem shows that the minimum effect optimality and the maximum BEP op-

timality are equivalent.

Theorem 3.3.2. An alignment g is minimum effect optimal if and only if g is maximum BEP

optimal.
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Proof. Let g be a maximum BEP alignment. We want to show that g is minimum effect

optimal. Let f be any alignment from G1 to G2. We need to show that the graph difference

size with respect to g is less equal the graph difference size with respect to f .

Let M1 and M2 be the domain and co-domain of f respectively. Let (H1(f), H2(f)) be

the BEP pair of f .

According to Theorem 3.3.1, the graph difference sets are given by:

N1D(f) = N1−M1

N2I(f) = N2−M2

N1X(f) = M1−H1(f)

N2X(f) = M2−H2(f)

Let |f | = |M1| = |M2| and let p1 = |H1(f)| = |H2(f)|.

By definition, the graph difference size with respect to f

DS(f) = |N1D(f)|+ |N2I(f)|+

|N1X(f)|+ |N2X(f)|

So,

DS(f) = |N1| − |f |+ |N2| − |f |+ 2(|f | − p1)

= |N1|+ |N2| − 2p1

Similarly,

DS(g) = |N1|+ |N2| − 2p2

where p2 = |H1(g)| = |H2(g)|.
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Since g is a maximum BEP alignment, p2 ≥ p1, which implies that DS(g) ≤ DS(f).

Now, we prove the converse. Let g be a minimum effect alignment. We want to prove that

g is a maximum BEP alignment. Let f be any alignment from G1 to G2. Let p1 and p2 be

defined as before. We need to show that p2 ≥ p1.

Since g is a minimum effect alignment, we have DS(g) ≤ DS(f). Then, using the above

equations for DS(g) and DS(f) we get −p2 ≤ −p1 which is the same as p2 ≥ p1. This

completes the proof.
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CHAPTER 4. A FRAMEWORK FOR EVALUATION OF

DIFFERENCING ALGORITHMS

We have designed a framework for experimental evaluation of graph differencing algorithms.

The framework includes an accuracy metric, a testbed, and a graph alignment visualization

mechanism.

We define an accuracy metric based on our new measure of graph difference. The accuracy

metric scaled to report 0% accuracy if the differencing algorithm were to find the worst possible

graph difference, and 100% accuracy if it were to find an optimal graph difference. We use our

accuracy metric to understand the overall performance trends of the algorithms and how they

are impacted by the graph properties.

The testbed is designed to generate extensive test cases. The testbed includes a mechanism

to generate pairs of graphs, each pair being a graph G1 and associated transform G2. The

testbed enables controlled experimentation which is essential for an extensive evaluation of the

accuracy of graph differencing algorithms with variations of graphs and their transforms. The

testbed is designed to enable experimental evaluations that account for graph properties that

are typical of a given application.

Each test case is a graph pair G1 and its transform G2 so that the difference is with high

probability known a priori and it can be used as the basis for checking the accuracy of the

difference computed by an algorithm.

A graph alignment visualization (GAV) mechanism can be used to identify inaccuracies

produced by different algorithmic strategies for graphs with different characteristics. We use

a GAV mechanism for inspecting and improving an alignment.

We note in experiments that the graph algorithms will perform differently depending on
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the characteristics of the graphs. Thus, a testbed is useful for understanding how different

alignment algorithms perform for graphs with different characteristics. This information can

give insights into how to select a graph algorithm and parameters for the algorithm depending

on the particular application.

4.1 An Accuracy Metric

In 1324, King Edward II of England decreed that three barleycorn, round and dry, make

an inch. Interestingly, King Edward I had ordered a permanent measuring stick made of iron

to serve as a master standard yardstick called the “iron ulna,” but Edward II reverted back

to the dark age of measurement. We now know that seeds, fingers and feet is not the way to

measure length.

To measure, we must first determine the entity and the attribute of the entity that we

want to measure. For example, car could be the entity and the attribute could be the cost

or the gas milage. Note that the units of measure would be very different depending on the

attribute we want to measure. In our case evolution is the entity, evolutionary change is the

attribute. A measure must provide a quantitative indication of the extent, capacity, or size of

some attribute. So far, we have proposed the evolution distance as a quantitative measure of

evolutionary change.

A metric is a quantitative measure of the degree to which an algorithm, system, component,

or process possesses a given attribute. Our goal is a metric which can serve as a quantitative

measure of the degree to which a graph differencing algorithm is accurate. We expect the

accuracy metric to provide information that can be used to make informed decisions and

intelligent choices for differencing graphs for their applications.

4.1.1 From Measure to Metric

Let G1 represent the original system and G2 represent the new system that has evolved.

Any alignment f1 which is not a minimum effect alignment will produce spurious differences.

The proposed accuracy metric is designed to measure the degree to which an alignment is
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inaccurate, that is the degree to which it reports spurious differences. For a minimum effect

alignment which does not report spurious differences, the metric reports 100% accuracy. And

for the worst possible alignment which reports that all nodes have changed, the metric reports

0% accuracy.

Unlike the speed of an algorithm, measurements of accuracy pose unique challenges. Sup-

pose we simply measure the differences reported by algorithms. Let us say algorithms A1 and

A2 respectively report that 10% and 20% of the nodes have undergone evolutionary change.

A simple notion of accuracy would lead one to conclude that the algorithm A1 is twice as

accurate. However, it misses important information. In reality, only 3% of the nodes may have

undergone an evolutionary change, in which case both the algorithms are highly inaccurate.

We define a new metric to compare the accuracy of graph alignment algorithms with respect

to the computation of evolutionary change. The accuracy metric is formally defined as follows.

Let DO be the size of the graph difference with respect to a minimum effect alignment - that

is DO = DS(f) where f is a minimum effect alignment. Let DA be the size of the graph

difference reported by an alignment algorithm A - that is DA = DS(A). Let N = |G1|+ |G2|

be the total number of nodes in the two graphs. Then we propose the following metric for

measuring the accuracy of the graph difference:

Accuracy =
DO(N −DA)
DA(N −DO)

(4.1)

Note that for the notion of effect described in this dissertation the alignment is simply to

point out what is different. When using this notion of effect, the accuracy metric is not designed

to report how good or bad the alignment is between nodes that are considered different.

4.2 A Graph Testbed for Controlled Experiments

We have designed a testbed to enable the use of an accuracy metric for conducting exten-

sive experimental studies. The testbed makes it possible to control the variations of graph

properties while analyzing accuracy and speed of alignment algorithms.
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An experimental analysis enables application scientists, usually not experts in graph differ-

encing, to select appropriate algorithms for their work. It is also valuable for tuning existing

algorithms and for designing new algorithms because of the resulting insights into how specific

algorithmic strategies affect accuracy.

Since graph alignment algorithms are data dependent, their performance is dependent on

the application-specific characteristics of the graphs. Properties of test graphs have significant

impact on the accuracy exhibited by an algorithm.

For example, we examined several graphs derived from the Linux kernels and found that

the average degree of connectivity per node is low, typically between 4 and 6. Thus, for the

studies of evolution of Linux, it is advisable to use an alignment algorithm that works well for

a low degree of connectivity.

Our current testbed provides the following capabilities: (1) automated generation of ran-

dom graphs of varying sizes and with specified characteristics, (2) automated generation of

graph transformations with specified effect sizes and type of changes, and (3) a graphical inter-

face to make a few selective changes which can be used for validation studies and for obtaining

insights into inaccuracy patterns of algorithms. We have used the graph generator software

available at [51].

There is a practical difficulty in applying the accuracy metric that we have proposed. Note

that the definition of the metric involves the use of DO, which the size of the graph difference

with respect to a minimum effect alignment. A minimum effect alignment is not known in

practice. The problem of finding a minimum effect and other optimal alignments is hard and

that is why non-optimal but fast heuristic algorithms are designed.

The testbed addresses this practical difficulty in the following way. The testbed enables one

to produce a pair of graphs (G1, G2) where G2 is obtained by a controlled transformation T of

G1. In controlling the transformation one can specify the types of changes and the percentage

of the nodes that should be affected by the transformation.

The transformation is done automatically by selecting random nodes in the graph G1 so

that they measure up to the specified percentage. By transforming the graph G1 to G2 in a
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controlled way, we know in advance the size of the effect. We denote it by DT . In computing

the accuracy metric, DT is used instead of DO. DT and DO are expected to be the same

because of the controlled way in which G1 and G2 are generated. It is highly unlikely but it

can happen that DT > DO, in which case the accuracy will be overestimated.

Another capability is that a user can manually perform basic transformations. The nodes

in original graph G1 are given unique identifiers so that user can track these changed nodes

easily though a Graph Alignment Visualization (GAV) mechanism. The user can validate if

an alignment detects the specific changes correctly or not.

The accuracy of an algorithm can vary significantly depending on the properties of the

graphs. A testbed can give us insight into how to select an alignment algorithm and its

parameters for a particular application. 2DOM and Gemini are fast algorithms but with a

couple of exceptions, their accuracy is found to be poor in the scenarios we have tested.

Each experiment on synthetic graphs starts with a graph G1 that is randomly generated

subject to specified constraints on: the number of nodes, the number of attributes, the average

degree of connectivity per node, and the maximum or minimum degrees of connectivity per

node. The next step is to perform a controlled transformation of G1 to produce G2. The

transformation is performed to guarantee a specified percentage DT /N .

The algorithms are then analyzed with respect to G1 and G2.

4.3 Graph Alignment Visualization

A graph alignment visualization (GAV) mechanism is important for reviewing the actual

graph difference results and inaccuracies produced by an algorithm. A GAV mechanism is

useful to gain insights into the nature of inaccuracies. By spotting patterns of inaccuracies, it

is possible to tune an existing algorithm or to design a new algorithm to improve accuracy.

The results produced by differencing large graphs are not easy to comprehend without

a user-friendly mechanism to efficiently navigate through the results, to focus attention and

identify important patterns. We have developed a GAV mechanism based on the GraphViz

software [93]. Along with spotting patterns of inaccuracies, we have found that the mechanism
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Figure 4.1 Visualization of alignment that can be improved

is useful for developing domain-specific insights that can be derived from the actual results of

differencing.

4.3.1 An Illustration of the GAV Mechanism

To illustrate the use of the GAV mechanism, we present an example of evolutionary change

based on graphs from Linux. The details of the example are described later in the chapter on

experimental analysis.

An example of matching done by the Gemini algorithm is shown in the Figure 4.1. We

have selected the Gemini algorithm to illustrate how the GAV mechanism may be used to

improve alignments. The functions are numbered for the purpose of illustration. The matched

nodes are shown as pairs with a box for each pair, and the deleted or inserted nodes are shown

individually without a box. The nodes with the same identifying numbers are matched by the

Gemini algorithm based on the function names, used as attributes.

Now we will give an example of an improvement spotted by using the GAV to view the

alignment. Referring to the Figure 4.1, the improvement is to match the node numbered 118

of G1 with the node numbered 112 of G2 and declare the node numbered 118 of G2 as a newly

inserted node. Unlike the original matching, the newly matched nodes 118 of G1 and 112 of

G2 have different attributes but identical connectivity to other matched nodes numbered 63

and 100. This new matching improves the accuracy.

After looking at the source code, we found that the new matching is more meaningful.

The function numbered 118 in the first Linux version was split into two functions numbered

118 and 112 in the second Linux version. The function numbered 112 actually copies the

functionality of the original function and the new node numbered 118 is a wrapper function.
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Table 4.1 Experiment 1: accuracy analysis - graphs with 40 attributes,
degree 5, 5% to 25% change, and 3000 nodes

Change 5% 10% 15% 20% 25%

Gemini 15% 13% 12% 10% 9%

2DOM 7% 9% 8% 6% 6%

Thus, as software, it does make sense to match the function numbered 118 in the first version

with the function numbered 112 in the second version as opposed to matching nodes numbered

118 with one another. By using GAV, we were able to reduce the difference size by 14.

4.4 Validation of the Experimental Framework

We performed experiments to illustrate how the testbed can be used to determine how graph

differencing algorithms perform differently for graphs with different characteristics. The graph

differencing algorithms involved in the experiments are the 2DOM algorithm recommended by

a survey article [89] and the Gemini algorithm used in industry for differencing VLSI circuits

[29].

In evaluating performance, the speed and the accuracy of the algorithm are both important.

Gemini and 2DOM are both very fast. The algorithms can difference graphs with 3000 nodes

in less than a second on a PC with 2GHz processor and 2GB memory.

4.4.1 Experiment 1: Graphs with 25% Difference

The results presented here are for an experiment where the algorithms are used to difference

graphs that have 3000 nodes, 40 attributes, average degree 5, and DT is between 5% and 25%

of the total nodes in G1 and G2. Table 4.1 shows the accuracy for the algorithms for the

graphs. The results show that the Gemini algorithm provides better accuracy than the 2DOM

algorithm.
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Table 4.2 MST parameter experiment: accuracy analysis - graphs with
degree 15, 40 attributes, 5% change, and 3 minimal signatures
per node in G1

Nodes 1000 2000 3000

Gemini 4% 3% 3%

2DOM 45% 15% 8%

4.4.2 Experiment 2: Graphs with degree 15

In this experiment the average degree is 15, the number of attributes is 40, DT is 5% of

the total nodes in G1 and G2, and the size of the graphs range from 1000 to 3000 nodes. A

comparison of the accuracy of the 2DOM and the Gemini algorithms is given in Table 6.1. The

results show that the 2DOM algorithm provides better accuracy than the Gemini algorithm.

Note that it is opposite of the pattern seen in Experiment 1.

From these two experiments, it should be clear that the graph algorithms will perform

differently depending on the characteristics of the graphs. Thus, a testbed is useful for under-

standing how different alignment algorithms perform for graphs with different characteristics.

This information can give insights into how to select a graph algorithm and parameters for the

algorithm depending on the particular application.

4.5 Summary

In this section we demonstrated that the performance of graph alignment algorithms varies

depending on the characteristics of the graphs. We have shown that a graph testbed can be

useful for finding an algorithm that works well for graphs with particular characteristics, and

that a GAV mechanism can be useful for better understanding and tuning the performance of

algorithms. We have also defined an accuracy metric that is designed to measure the degree

to which an alignment reports spurious differences.
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CHAPTER 5. MINIMAL SIGNATURE TREE AND USE IN GRAPH

ALIGNMENT

In the previous chapter we described and compared different notions of optimality of graph

alignments. We prove some properties of minimum effect optimal alignment and also intro-

duced an accuracy metric for comparing the alignments produced by different algorithms.

In this chapter we introduce the notion of minimal signature as a constraint to reduce the

number of matching possibilities that need to be considered for a pair of graphs. A minimal

signature of a graph G is a sequence of labels that defines a unique subgraph of G and the

subgraph has a single sink node.

The number of matching possibilities are reduced using each minimal signature as a clue

to select respective nodes from G1 and G2 for alignment. A node u of G1 is aligned with a

node v of G2 if u and v are sinks of respective subgraphs of G1 and G2 defined by a minimal

signature common to G1 and G2.

A new data structure called the Minimal Signature Tree (MST) is introduced as an effective

mechanism to store and use all minimal signatures of a graph G. We also introduce a refinement

called the Co-MST to compute and store minimal signatures common to two graphs.

The MST can be thought of as a generalization of the well-known suffix tree data structure

[105, 76, 103] for strings. We prove that the MST and the suffix tree are closely related if the

graph G is actually a string. Like the suffix tree, MST and Co-MST are defined to be rooted

trees. Each leaf of a suffix tree corresponds to a suffix of the string for which the suffix tree is

constructed. Each leaf of a MST corresponds to a minimal signature of the graph for which

the MST is constructed.
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5.1 Notation

Let G be a graph and u be a node of G, then a node v is called a parent of u if there exists

an edge (v, u) in G and w is called a child of u if there exists an edge (u, w) in G. Let M be a

subset of nodes. We will denote the set of all the parents of M by parents(M) and the set of

all the children of M by children(M).

Let H be a subgraph of G. A node of H that does not have any child belonging to H is

called a sink of H. A node of H that does not have any parent belonging to H is called a

source of H.

A path P = n1, n2, ..., nk is a sequence of nodes in a graph G such that (ni, ni+1) is an edge

in G for all 1 ≤ i < k. The label of path P , denoted by L(P ), is defined as L(P ) = A1, A2, ..., Ak

where Ai is the label of the node ni. Given a sequence s of node labels, G(s) will denote the

subgraph of G consisting of all the paths in G with the label s. The path P is a cycle if

n1 = nk. A graph is acyclic if it has no cycles.

5.2 Minimal Signatures and Minimal Signature Tree

Definition 11. A sequence s of node labels is called a signature of G if and only if the following

conditions hold: (1) G(s) has a unique sink and (2) all the paths with label s have the same

sink. We define s to be minimal if and only if there does not exist a prefix of s that is a

signature.

In the above definition, the first condition is necessary but not sufficient for the second

condition to hold. The Figure 5.1 shows an example of a graph G where G(s) has a unique

sink but not all the paths with label s have the same sink. The subgraph G(AA) has a unique

sink but there are two paths with the same label AA but different different sinks.

5.2.1 The Minimal Signature Tree (MST)

To define the Minimal Signature Tree of a graph G it is assumed that G has exactly one

sink and it has a unique label. For this assumption to hold, the graph may be augmented by
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Figure 5.2 A graph G

(1) adding a new node with a unique label, and (2) adding an edge from each sink of G to the

new node. We use the notation $ for the unique label. This assumption and the augmentation

of a graph is similar to what is done to define the suffix tree for strings.

Definition 12. The Minimal Signature Tree (MST) of a graph G with minimal signatures

ms1, ms2, ...,msk is defined to be a rooted tree with exactly k leaves numbered 1 through k such

that: (1) each internal node other than the root has at least two children and each edge of the

MST has a label of a nonempty path of G; (2) no two edges directed out of a node of the MST

have labels with a nonempty common prefix; (3) the concatenation of the labels along a path

from the root to the leaf numbered i gives the minimal signature msi.

The definition of the Minimal Signature Tree is illustrated in the following example. Let

G be the graph shown in Figure 5.2. The minimal signatures of G are: AB, AC, A$, BA, BB,

BC, B$, CA, CB, and CC. The Minimal Signature Tree of G is shown in Figure 5.3.

5.2.2 The Relation between Minimal Signature Tree and Suffix Tree

Let S = A1,A2,...,Ak be a string. A suffix of S is a substring of the type T = Ai, Ai+1,

..., Ak for some 1 ≤ i ≤ k. A prefix of S is a substring of the type T = A1, A2, ..., Ai for

some 1 ≤ i ≤ k. For example, let S = mississippi be a string. The suffixes of the string are:

mississippi, ississippi, ssissippi, sissipi, issippi, ssippi, sippi, ippi, ppi, pi, i.
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Figure 5.3 The Minimal Signature Tree of G

A string is a special case of a graph. For example, the string ABCDED can be thought of

as a graph with six nodes with labels, A, B, C, D, E, and D and an edge between each pair

of successive nodes.

Let S be a string of length n with the label A1, A2, ..., An, and S(1), S(2), ..., S(n) be

the suffixes of S. S(i : j) be the substring of S starting at position i and ending at position j.

Let lg(S) denote the length of any string S. We will use i to refer to the node of S at the ith

position.

Given a prefix P of a label T = A1,A2,...,An, denote by T − P the label Ak+1,Ak+2...,An

where k = lg(P ).

The following observations about relationships between minimal signatures and suffixes are

used later to prove that the the Minimal Signature Tree is isomorphic to the Suffix Tree if the

graph is actually a string.

Remark 1: If d is a signature of a string G = S then the graph G(d) consists of a single path

S(i : j) where j is the unique sink of G(d) and i = j − lg(d) + 1.

Remark 2: If d is a signature of a string G = S then d is a prefix of a suffix S(i) where

i = j − lg(d) + 1 and j is the unique sink of G(d). This follows from Remark 1. Thus,

every signature d of S is a prefix of a unique suffix of S.
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Remark 3: If P is a prefix of a suffix S(i) and not a prefix of any other suffix then P is

a signature. This claim is justified as follows. Since the graph G = S is a string,

the subgraph G(P ) has a unique sink and it consists of a single path S(i : j) where

j = i + lg(P )− 1. Then, by definition, P is a signature.

Remark 4: d is a signature of a string S if and only if it is a prefix of one and only one suffix.

This follows from Remarks 2 and 3.

Remark 5: In the Suffix Tree ST (S) of S, let Leaf(i) denote the leaf corresponding to suffix

S(i) and let I be the internal node of ST (S) which is parent of Leaf(i). Then, by

definition of the Suffix Tree, there exists k such that i ≤ k < n Ai,Ai+1,...,Ak is the

path label from the root to the node I and Ak+1,...,An is the label of the edge from I to

Leaf(i). Every prefix that is unique to the suffix S(i) is of the form Ai,Ai+1,...,Aj where

k < j ≤ n.

Remark 6: There is a unique minimal signature di corresponding to each suffix S(i) and vice

versa and di = Ai,Ai+1,...,Ak+1 where k is as defined in Remark 5. Also, note that the

suffix S(i) and the corresponding minimal signature di coincide if n = k + 1.

Theorem 5.2.1. Let S be a string of length n with the label A1, A2, ..., An. Let ST (S) be

the Suffix Tree of S. Let MST (S) be the minimal signature tree of S. Then, MST (S) is

isomorphic to ST (S) with the only possible difference being the labels for edges to the leaf

nodes. These edge labels differ as follows. If di is the unique minimal signature corresponding

to S(i), L and M respectively leaves in ST (S) and MST (S) corresponding to S(i) and di,

Parent(L) and Parent(M) respectively parents of L and M , Ak+1, ..., An the edge label in

ST (S) from Parent(L) to L then the edge label in MST (S) from Parent(M) to M is Ak+1.

Then, the edge label in MST (S) is either equal to or a contraction of the edge label in ST (S)

and so MST (S) is homomorphic to ST (S).

Proof. Note that the difference cited in the theorem occurs only if the edge label for the leaf

node in the Suffix Tree has length bigger than one.
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We give a proof by induction on n, the length of the string. The base case n = 1 is simple.

There is only one suffix S(1) with label A1 which is also the minimal signature. ST (S) and

MST (S) are isomorphic with two nodes each and the label from the root to the leaf node is

A1 in both cases.

Assume that the theorem is true when the length of the string is n − 1. By applying the

theorem to the string S(2) which is of length n− 1, ST (S(2)) and MST (S(2)) are isomorphic

with possible edge label differences as noted in the statement of the theorem.

S has only one suffix, namely S(1), which is not a suffix of S(2), and all the other suffixes

are the same. Let S(i) be a suffix of S(2) with which S(1) shares the largest prefix T = A1,

A2, ..., Ak. We prove the theorem for S by analyzing how the suffix and Minimal Signature

Trees differ between S and S(2). The analysis is divided in the following three cases.

Case 1: The label T = A1, A2, ..., Ak is the same as the label of the path from the root

of ST (S(2)) to an internal node I of ST (S(2). By induction hypothesis, ST (S(2)) and

MST (S(2)) are isomorphic. With respect to this isomorphism, let m(I) denote the node

in MST (S(2)) corresponding to I.

The isomorphism between ST (S(2)) and MST (S(2)) extends to an isomorphism between

ST (S) and MST (S)as follows:

1. By definition of the Suffix Tree, ST (S) is the same as ST (S(2)) except, there is one

more leaf node Leaf(1) for the suffix S(1), added as a child at the internal node I.

The edge label from I to Leaf(1) is Ak+1, ..., An.

2. By Remark 6, the minimal signature corresponds to S(1) is d1 = A1, A2, ..., Ak+1.

This implies that MST (S) is the same as MST (S(2)) except, there is one more

leaf node m(Leaf(1)) for the minimal signature d1, added as a child at the internal

node m(I). The edge label from m(I) to m(Leaf(1)) is Ak+1.

3. The labels for the edges to the newly added leaf nodes are respectively Ak+1, ..., An

and Ak+1 in ST (S) and MST (S). This difference in edge labels is as stated in the

theorem.



www.manaraa.com

44

Case 2: The label T = A1, A2, ..., Ak is respectively an extension of and a proper prefix

of the labels for paths from the root of ST (S(2)) to nodes I and its child J , which are

both internal nodes. By induction hypothesis, ST (S(2)) and MST (S(2)) are isomorphic.

With respect to this isomorphism, let m(I) and m(J) denote the nodes in MST (S(2))

corresponding to I and J , respectively. Let P and Q be the labels of the paths from the

root to I and J , respectively.

The isomorphism between ST (S(2)) and MST (S(2)) extends to an isomorphism between

ST (S) and MST (S) as follows:

1. By definition of the Suffix Tree, ST (S) is the same as ST (S(2)) except, there is one

more internal node N between I and J ,the edge from I to N has the label T − P ,

and the edge from N to J has the label Q − T . Also, there is one more leaf node

Leaf(1) for the suffix S(1), added as a child at the internal node N . The edge label

from N to Leaf(1) is Ak+1, ..., An.

2. By Remark 6, the minimal signature corresponds to S(1) is d1 = A1, A2, ..., Ak+1.

This implies that MST (S) is the same as MST (S(2)) except, there is one more

internal node m(N) between m(I) and m(J), the edge from m(I) to m(N) has the

label L− P , and the edge from m(N) to m(J) has the label Q− L. Also, there is

one more leaf node m(Leaf(1)) for the minimal signature d1, added as a child at

the internal node m(N). The edge label from m(N) to m(Leaf(1)) is Ak+1.

3. The labels for the edges from the newly added internal nodes to the newly added

leaf nodes are respectively Ak+1, ..., An and Ak+1 in ST (S) and MST (S). This

difference in edge labels is as stated in the theorem.

Case 3: The label T = A1, A2, ..., Ak is respectively an extension of and a proper prefix of

the labels for paths from the root of ST (S(2)) to internal node I and its child J . Unlike

the second case, J is not an internal node but the leaf node Leaf(i) corresponding to the

suffix S(i). The fact that the label T extends beyond the parent of the Leaf(i) implies

that S(i) is the only suffix with T as the common prefix with S(1).
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Unlike the two earlier cases, the minimal signature corresponding to S(i) as a suffix of

S is strictly larger than its minimal signature as a suffix of S(2). This is because the

longest common prefix between S(i) and S(1) is strictly larger than any other prefix it

shares with S(j) for 2 ≤ j ≤ n and j 6= i.

By induction hypothesis, ST (S(2)) and MST (S(2)) are isomorphic. With respect to this

isomorphism, let m(I) and m(J) be the nodes in MST (S(2)) corresponding to I and J .

Let P and Q be the labels of the paths from the root to I and J respectively.

The isomorphism between ST (S(2)) and MST (S(2)) extends to an isomorphism between

ST (S) and MST (S) as follows:

1. By definition of the Suffix Tree, ST (S) is the same as ST (S(2)) except, there is one more

internal node N between I and J ,the edge from I to N has the label T − P , and the

edge from N to J has the label Q−T . Also, there is one more leaf node Leaf(1) for the

suffix S(1), added as a child at the internal node N . The edge label from N to Leaf(1)

is Ak+1, ..., An.

2. By Remark 6, the minimal signature corresponds to S(1) is d1 = A1, A2, ..., Ak+1. This

implies that MST (S) is the same as MST (S(2)) except, there is one more internal node

m(N) between m(I) and m(J), the edge from m(I) to m(N) has the label T −P . There

is one more leaf node m(Leaf(1)) for the minimal signature d1, added as a child at the

internal node m(N). The edge label from m(N) to m(Leaf(1)) is Ak+1.

3. MST (S) also differs from MST (S(2)) in one more respect. In MST (S), m(J) the leaf

node for di is now the child of the new node m(N) and not m(I) as in the case of

MST (S(2)). Let e be the first character of Q − T , the edge label in ST (S) from N to

J = Leaf(S(i)). By Remark 6, di = Q + e is the minimal signature corresponding S(i).

By definition of a minimal signature tree, the edge in MST (S) from m(N) to m(J) has

the label e.

4. The newly added internal node N in ST (S) has exactly two children which are leaf nodes

corresponding to suffixes S(1) and S(i). So also, the newly added internal node m(N)
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Figure 5.4 The Minimal Signature Tree of the string mississippi$

in MST (S) has exactly two children which are leaf nodes corresponding to minimal

signatures d1 and di. As discussed above, the edge labels from m(N) to its leaf nodes

are just the first characters of the corresponding edge labels from N to its leaf nodes as

required in the statement of the theorem.

The following example illustrates the above theorem. Let G =mississippi$ be a string. The

suffixes of G are mississippi$, ississippi$, ssissippi$, sissippi$, issippi$, ssippi$, sippi$, ippi$,

ppi$, pi$, and i$. The minimal signatures of G are m, issis, ssis, sis, issip, ssip, sip, ip, pp, pi,

and i$.

The correspondence between the minimal signatures and suffixes for G are as follows:

(m,mississipi$), (issis,ississippi$), (ssis,ssissippi$), (sis,sissipi$), (issip,issippi$), (ssip,ssippi$),

(sip,sippi$), (ip,ippi$), (pp,ppi$), (pi,pi$), (i$,i$). Note that each minimal signature is the

shortest prefix of the corresponding suffix that is also a signature.

Figure 5.4 illustrates the MST of the string mississippi$. Figure 5.5 illustrates the Suffix

Tree of the string mississippi$. Note that the MST and Suffix Tree are identical for the string

except that each edge label of a leaf node of the MST is the prefix of length 1 of the edge label

of the corresponding leaf node in the Suffix Tree.
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5.3 Construction of MST

In this section we describe an algorithm for constructing the MST and show how to use

the construction to come up with an alignment. We start with a theorem which gives a

characterization of minimal signatures that is useful for actually constructing the MST. We

use the following notation to state the theorem and its proof.

Let X be a set of nodes in graph G and A be a node label. We use the notation nbd(X, A)

to denote the subset of nodes of children(X) that have label A.

Theorem 5.3.1. Let G be a graph and s = A1, A2, ..., Ak be a sequence of labels. Let S be the

set of nodes of G and S1, S2, ..., Sk be a sequence of sets inductively defined as follows: S1 is

the set of nodes with label A1 and Si = nbd(Si−1, Ai) for i = 2, 3, ..., k. Then s is a signature

if and only if Sk has only one node.

Proof. Recall s is a signature of G if and only if the following conditions hold: (1) G(s) has a

unique sink and (2) all the paths with label s have the same sink.

The proof is structured as follows: First, we prove that if a node is a sink of G(s) then it is

a sink of a path with label s. Second, we prove that Sk is the set of the sinks of all the paths

with label s. Finally, we use the first two points to prove the theorem.

Part 1: First, we prove by contradiction that if a node is a sink of G(s) then it is a sink of a

path with label s.
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Let us assume to the contrary that n is a sink of G(s) but not a sink of a path with

label s. By the definition of G(s), n is in at least one path with label s. Let P be a path

with label s that includes n. Since by assumption n cannot be the sink of P , then there

must exist an edge (n, m) in P . By definition of G(s) the edge (n, m) is in G(s). By the

definition of sink, n cannot be a sink of G(s). Therefore, a node cannot be a sink of G(s)

unless it is also a sink of a path with label s.

Part 2: Second, we prove by induction on k that Sk is the set of the sinks of all the paths

with label s. Before doing so we will make some observations.

Remark 1: Let n1, n2, ..., nk−1, nk be a sequence of nodes. For k = 1, note that trivially

the sequence consists of one node, that the node is a path of length one, and that

the node is the sink of the path.

Remark 2: For k > 1, note that the sequence of nodes n1, n2, ..., nk−1, nk is a path

with label A1, A2, ..., Ak−1, Ak if and only if: (1) n1, n2, ..., nk−1 is a path with label

A1, A2, ..., Ak−1, (2) there exists an edge from nk−1 to nk, and (3) the label of nk is

Ak.

Remark 3: Note that if it is given that n1, n2, ..., nk−1 is a path with label A1, A2, ..., Ak−1,

then it follows from Remark 2 that whether n1, n2, ..., nk−1, nk is a path with label

A1, A2, ..., Ak−1, Ak depends only on whether there is an edge from nk−1 to nk and

the label of nk is Ak.

The base case of the induction is k = 1. For k = 1, s consists of only one label A1. The

paths with label A1 each consist of a single node with label A1. Note that S1 was defined

to be the set of nodes with label A1. It follows from Remark 1 that the nodes of S1 are

the sinks of the paths with label A1.

The inductive case is for k > 1. By induction hypothesis we assume that Sk−1 is the set

of the sinks of all the paths with label A1, A2, ..., Ak−1. Then, a node n is an element of

the set Sk−1 if and only if there exists a path n1, n2, ..., nk−1 with label A1, A2, ..., Ak−1

and n = nk−1.
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Let n1, n2, ..., nk−1 be a path with label A1, A2, ..., Ak−1. By the definition of nbd({nk−1}, Ak),

a node is an element of the set nbd({nk−1}, Ak) if and only if an edge exists from nk−1 to

the node and the label of the node is Ak. Note that by Remark 3 that every extension of

the sequence n1, n2, ..., nk−1 by a node n in the set nbd({nk−1}, Ak) is a path with label

A1, A2, ..., Ak−1, Ak and the sink of the path is the node n.

By definition we note that:

Sk = nbd(Sk−1, Ak) =
Sk−1⋃

n

nbd({n}, Ak) (5.1)

It follows from Remark 3 that Sk is the set of the sinks of all the paths with label

s = A1, A2, ..., Ak and so the induction is proved.

Part 3: We use the previous two parts in the proof of the theorem.

Since a node cannot be a sink of G(s) unless it is also a sink of a path with label s, then

an upper bound for the number of sinks in G(s) is the number of sinks of the paths with

label s. If condition (2) is met - that is if all the paths with label s have the same sink,

then the upper bound for the number of sinks in G(s) is 1 and therefore the number of

nodes in Sk is at most 1.

G(s) is empty if and only if there are no paths with label s. So if there is at least one

path with label s then the lower bound for the number of sinks in G(s) is 1. Similarly, if

there is at least one sink of G(s), then there must be at least one path with label s. So

if condition (1) is met, then the number of nodes in Sk is at least 1.

So if conditions (1) and (2) are met, then the number of nodes in Sk must be 1.

Similarly, if the number of nodes in Sk is 1, then since Sk is the set of the sinks of all

the paths with label s, then all the paths with label s must have the same sink - that is

condition (2) must be satisfied. Also, since the sinks of G(s) must be elements of Sk and

if the number of nodes in Sk is 1, then G(s) is non-empty and must have one sink - that

is condition (1) must be satisfied.
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It follows that Sk contains exactly one node if and only if conditions (1) and (2) are met.

Based on the above theorem, minimal signatures can be constructed using the following

algorithm.

Algorithm 1 GMS: An Algorithm for Generating Minimal Signatures

k ← 1
Select a random label A1.
S ← S1 ← set of nodes of G with label A1.
while |Sk| > 1 do

k ← k + 1
Select a random label Ak.
S = Sk = nbd(Sk−1, Ak)

end while
n← k

if |S| = 1 then
s← A1, A2, ..., An is a minimal signature.

else if S = null then
A1, A2, ..., An or any extension of it is not a minimal signature.

end if

5.4 A Combined MST for Graph Alignment

Instead of constructing separate MSTs for G1 and G2, it is advantageous to construct a

Combined MST (Co-MST) for the purpose of alignment of the two graphs. With a Co-MST

we can compute only the minimal signatures that will be used for graph alignment. The graph

alignment algorithm presented in this dissertation uses minimal signatures that are shared by

both the graphs so that the sink of G1(s) is aligned with the sink of G2(s) where s is a shared

minimal signature.

The Co-MST construction algorithm uses the GMS algorithm for generating the sequences

of labels that are minimal signatures in both graphs. As discussed earlier, the GMS algorithm

works by extending a sequence of labels until the sequence is a minimal signature.
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When constructing the Co-MST, the extension of a sequence of labels is continued only if

there exists an extension of the sequence that is a minimal signature for both the graphs. This

amounts to the following: In successive iterations of the GMS algorithm, a pair of sets Sk are

constructed - one for each graph. We use the notation Sk(G) to refer to the set Sk for a graph

G. If |Sk(G1)| ≤ 1 or |Sk(G2)| ≤ 1, then the generation of the minimal signature is halted.

Another important performance optimization is possible with the Co-MST. The number of

minimal signatures computed may be huge even after restricting the computation to only the

minimal signatures shared by both the graphs. Many of minimal signatures may be associated

with the same pair of nodes. Computation of one minimal signature per node may be all that

is needed for aligning the nodes of one graph with nodes of the other graph.

5.4.1 Co-MST Definition

We use the notation MS(G) for the set of minimal signatures and PMS(G) for the set of

prefixes of the minimal signatures of graph G. We say that a string t is an extension of string

s if s is a prefix of t and lg(t) > lg(s). Let P be a set of strings, s, t ∈ P , and t be an extension

of s. We say that t is a minimal extension of s in P if there does not exist a u ∈ P such that

t is an extension of u and u is an extension of s. We say that t is a maximal element of P if

there does not exist an element of P that is an extension of t.

Let G1 and G2 be graphs. We denote by C(G1, G2) the set of maximal elements of

PMS(G1) ∩ PMS(G2). Note that MS(G1) ∩ MS(G2) ⊆ C(G1, G2) but that MS(G1) ∩

MS(G2) need not equal C(G1, G2). We define B(G1, G2) to be the set of elements belonging

to the union of: (1) C(G1, G2) and (2) the subset of PMS(G1)∩PMS(G2) that have at least

two minimal extensions in PMS(G1) ∪ PMS(G2). The set C(G1, G2) is defined so that its

elements are exactly the labels of paths from the root to the leaves of the Co-MST. Similarly,

the set B(G1, G2) is defined so that its elements are exactly the labels of paths from the root

to the nodes of the Co-MST.

Definition 13. Given graphs G1 and G2 and a set P ⊆ C(G1, G2) and let BP (G1, G2) be

the set of prefixes of strings in P that are also in B(G1, G2). A Co-MST is defined to be a
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rooted, directed tree with exactly |BP (G1, G2)| nodes such that: (1) each edge is associated with

a label of a nonempty path of G1, (2) no two edges directed out of a node can be associated with

labels that have a nonempty common prefix, (3) if s is a path label from the root to a node n of

Co-MST then s ∈ BP (G1, G2), (4) for s ∈ BP (G1, G2) there is a unique node n of Co-MST

such that the label of the path from the root to n is s.

We denote by Co-MSTP (G1, G2)the Co-MST of G1 and G2 defined for a set P . Note that

a string s corresponds to a leaf of a co-MSTP (G1, G2) if and only if s ∈ P . We say that a Co-

MSTP (G1, G2) is complete if P = C(G1, G2). We denote by Co-MST(G1, G2) the complete

Co-MST.

5.4.2 Co-MST Construction Algorithm

We construct a Co-MST inductively. Given a co-MSTP (G1, G2), we generate a string s in

C(G1, G2) not in P and construct the co-MSTR(G1, G2) where R = P ∪ {s}.

Note that the Co-MSTP (G1, G2) is a subtree of Co-MSTR(G1, G2) and so it is only neces-

sary to create the additional nodes and edges of the Co-MSTR(G1, G2) that do not exist in the

Co-MSTP (G1, G2). There is a one-to-one correspondence between the nodes to be added and

the strings that are in the set BR(G1, G2) but not in the set BP (G1, G2). The strings that cor-

respond to nodes in Co-MSTR(G1, G2) but do not correspond to nodes in Co-MSTP (G1, G2)

are generated. The algorithm then modifies Co-MSTP (G1, G2) by inserting nodes correspond-

ing to the strings in BR(G1, G2) − BP (G1, G2) and inserting edges connecting these nodes.

The result is the Co-MSTR(G1, G2).

The Co-MST construction algorithm applies the GMS algorithm concurrently for G1 and

G2 and constructs sets Sk(G1) and Sk(G2) where k corresponds to the step of the GMS

algorithm. The GMS algorithm is halted for both G1 and G2 if either |Sk(G1)| ≤ 1 or

|Sk(G2)| ≤ 1. Let n be the step where the GMS algorithm is halted and s be the string

constructed at step n.

A prefix of s of length k belongs to C(G1, G2) if (1) k = n and both |Sk(G1)| = 1 and

|Sk(G2)| = 1 or (2) k = n− 1 and either |Sk+1(G1)| = 0, or |Sk+1(G2)| = 0.
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If a prefix of s of length k does not belong to C(G1, G2), it belongs to B(G1, G2) if k < n

and all the children of the nodes in Sk(G1) ∪ Sk(G2) do not have the same label.

Let t and u be two prefixes of s and u be a minimal extension of t in the set of prefixes

of s. Then u is in BR(G1, G2) but not BP (G1, G2) if and only if one of the following two

conditions hold: (1) t 6∈ BP (G1, G2) or (2) t ∈ BP (G1, G2) but there is no edge out of the

node corresponding to t in co-MSTP (G1, G2) that has a non-empty common prefix with label

u− t.

Note that there is already an edge between nodes corresponding to t and u in co-MSTP (G1, G2)

if and only if u ∈ BP (G1, G2). If u 6∈ BP (G1, G2), then an edge is created from the node cor-

responding to t to the node corresponding to u.

Let e be the edge between the nodes corresponding to t and u. The label associated with

e is u without the prefix t. We use the notation label(e)= u− t to denote the label associated

with edge e.

Let k be the length of t and label(e)=A1, A2, ...Am where m is the length of label(e). Note

that every path of length m that starts at a node in nbd(Sk(G1), A1) or nbd(Sk(G2), A1) will

have label(e).

5.4.3 String Generation for the Construction Algorithm

The Co-MST construction algorithm works inductively by constructing a

Co-MSTR(G1, G2) given a Co-MSTP (G1, G2) and a string s in C(G1, G2) not in P , where

R = P ∪ {s}. In this subsection we describe how to compute a string s in C(G1, G2) not in P

(assuming C(G1, G2) 6= P ).

The generation of a string in C(G1, G2) not in P is also inductive. Given a string t that

is a proper prefix of a string in C(G1, G2) − P , the method selects a label A such that the

extension of t by A is a prefix of a string in C(G1, G2) − P . Note that this amounts to the

extension of t by A being either a string in C(G1, G2) − P or a proper prefix of a string in

C(G1, G2)− P . The base case of the induction is t is the empty string. We use the notation

t + A to denote the extension of t by label A.
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There may be multiple possibilities for A where t+A is a prefix of a string in C(G1, G2)−P .

We use the notation extP (t) to denote the set of possible labels that extend t to be a prefix of

an element of C(G1, G2)−P . The method chooses a label at random from extP (t) by which to

extend t. The extension process is repeated until the extension is an element of C(G1, G2)−P .

Let s be a string in C(G1, G2) − P and t be a proper prefix of s. The set extP (t) from

which a label used to extend t is randomly selected is computed inductively. The base case is

when the set P is empty. Let k be the length of string t. Then extP (t) is the set of labels that

label children of Sk(G1) and label children of Sk(G2).

The inductive case assumes that P is not empty. Let r be a string in P and Q be the set

P − {r}. The induction assumes that extQ(t) has been computed and computes extP (t) from

extQ(t). Note that by definition extP (t) and extQ(t) may differ only when t is a prefix of r.

For each prefix t of r, extP (t) is computed from extQ(t) as follows:

Algorithm 2 An Algorithm for Refinement of the Sets of Extensions

extP (r)← ∅
Let ti denote the prefix of r of length i.
for i =len(r) to 1 do

A← ti − ti−1

if extP (ti) = ∅ then
extP (ti−1)← extQ(ti−1)−A

else
extP (ti−1)← extQ(ti−1)

end if
end for

Note that extQ(t) is the empty set implies extP (t) is the empty set. Note also that t is

the empty string and extP (t) is the empty set implies that P = C(G1, G2) and thus Co-

MSTP (G1, G2) is complete. Finally, note that if k is the length of t then extP (t) must be the

set of labels that label children of Sk(G1) and label children of Sk(G2) unless an extension of

t is in P - and thus we do not need to explicitly compute extP (t) unless t corresponds to a

node in Co-MSTP (G1, G2).

After constructing the Co-MST the minimal signatures are used to constrain alignment of
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the nodes of the graphs. A node is aligned with another node if the nodes have a minimal

signature in common. Some nodes may have more than one possibility for alignment. In our

experiments in the next chapter, we note that there are very few nodes that have multiple

possibilities for alignment. Those nodes are aligned using a simple scoring function based on

the number and length of the minimal signatures common to the nodes.

After using the minimal signatures for alignment there are a few nodes that may not have

minimal signatures associated with them. A simple post-processing step aligns these nodes

based on the alignment of the adjacent nodes. Some local changes to the alignment are also

made in the post-processing step where the difference can be made smaller.
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CHAPTER 6. EXPERIMENTAL ANALYSIS

In the previous chapter we introduced the concepts of Minimal Signature, the Minimal

Signature Tree, and described a graph alignment algorithm based on the concepts. In this

chapter we describe an experimental analysis of our algorithm and compare it with the 2DOM

and the Gemini algorithms.

We use our framework for the evaluation of the graph differencing algorithms. The exper-

iments are done using graphs generated using our testbed as well as graphs extracted from

Linux. The experiments involve synthetic graphs generated using our testbed and the graph

generator software from [51]. The synthetic graphs reach to about ten thousand nodes.

The experiments also involve smaller graphs extracted from Linux. These graphs were

extracted for a project on incremental validation of a reliability property of Linux where

the reliability of a new version V 2 is proved based on the reliability of the old version V 1

and inductive argument based on the difference between the two versions. The difference is

computed using a graph model for the software.

Throughout our experiments, the MST based algorithm produced differences with nearly

perfect accuracy while the Gemini and 2DOM algorithms were not accurate.

6.1 Experiments on Synthetic Graphs

Experiments were done for graphs ranging in size from tens of nodes to thousands of nodes.

For each experiment on synthetic graphs, the runs were repeated 50 times by generating new

random graphs G1 while keeping the experiment controls the same. The average values of

reported differences were computed for each algorithm.

Unless otherwise specified, the maximum degree, number of attributes, and the percentage
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of nodes in the difference was fixed and the size of the graphs was varied for each experiment.

The results of each experiment are presented as an average over 50 test cases for a given size

of graph.

6.1.1 Experiment 1: Node Coverage and Unique Matchings

Two intrinsic properties of the MST-based algorithm that are key to its performance are

the extent to which minimal signatures are associated with nodes of the graphs G1 and G2,

and the extent to which minimal signatures describe a unique correspondence between the

nodes of the graphs G1 and G2.

We refer to the percentage of nodes that share a minimal signature with another node

as the node coverage. We say that a node in one graph that shares minimal signatures with

exactly one node in the other graph is uniquely matched. It is desirable to have greater node

coverage and a greater percentage of nodes that are uniquely matched.

When associating minimal signatures with only the sinks of the subgraphs they describe,

the node coverage ranged between 75% and 90% and more than 99% of those nodes were

uniquely matched by minimal signatures throughout our experiments.

When associating minimal signatures with both the sinks and unique sources of subgraphs

they describe, the node coverage ranged between 95% and 99% and more than 98% of those

nodes were uniquely matched by minimal signatures throughout our experiments.

6.1.2 Experiment 2: Graphs with only 10 Attributes

Here results are presented for an experiment where the algorithms are used to difference

graphs that have 10 attributes, average degree 5, DT is 5% of the total nodes in G1 and G2,

and the size of the graphs range from 1000 to 3000 nodes. Table 6.1 shows the accuracy for

the algorithms for the graphs.

In the Algorithm Parameter Experiment described later, the accuracy of Gemini and 2DOM

are opposite of the pattern seen in Experiment 2. It clearly shows that the graph properties

impact the accuracy of an algorithm. In one scenario, an algorithm A1 may do better than
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Table 6.1 Experiment 2: accuracy analysis - graphs with 10 attributes,
degree 5, 5% change, and between 1000 to 3000 nodes

Nodes 1000 2000 3000

Gemini 8% 5% 4%

2DOM 6% 1% 1%

MST 93% 93% 93%

Table 6.2 Experiment 3: accuracy analysis - graphs with 40 attributes,
degree 5, 5% to 25% change, and 3000 nodes

Change 5% 10% 15% 20% 25%

Gemini 15% 13% 12% 10% 9%

2DOM 7% 9% 8% 6% 6%

MST 99% 98% 96% 96% 94%

algorithm A2. In another scenario, it may be exactly opposite and A2 may do better than A1.

A scenario represents a set of graph properties.

In both experiments, it is seen that the accuracy of the 2DOM algorithm diminishes as the

size of the graph increases. This behavior is prominent in this experiment as the number of

nodes is increased from 1000 to 2000.

6.1.3 Experiment 3: Graphs with 25% Difference

Here results are presented for an experiment where the algorithms are used to difference

graphs that have 3000 nodes, 40 attributes, average degree 5, and DT is between 5% and 25%

of the total nodes in G1 and G2. Table 6.2 shows the accuracy for the algorithms for the

graphs.

6.1.4 Experiment 4: Graphs with 10000 Nodes

Here results are presented for an experiment where the algorithms are used to difference

graphs that have between 5000 and 10000 nodes, average degree 10, the number of attributes

is 40, and DT is 5% of the total nodes in G1 and G2. The graph generator we are using could
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Table 6.3 Experiment 4: accuracy analysis - graphs with 40 attributes,
degree 10, 5% change, and between 5000 and 10000 nodes

Nodes 5000 7500 10000

Gemini 2% 2% 2%

2DOM 11% 2% 2%

MST 99% 99% 99%

not produce larger graphs and so our experiments did not use graphs with more than 10000

nodes. Because of the time necessary for the graph generator to create the larger graphs, we

only created 5 of each size graph instead of 50. Table 6.3 shows the accuracy for the algorithms

for the graphs.

6.2 Example of Graphs from Linux

The formalism we have proposed is applicable to different graph representation of software.

It is important to choose an appropriate graph representation that captures the semantics

important for addressing a given problem.

We present an example of evolutionary change in Linux. The example is motivated by the

intended use of evolutionary change for incremental and inductive validation. These techniques

are meant to validate system B based on known validity of system A and the evolutionary

change from A to B.

For the purpose of illustration, we compute evolutionary change between three versions of

Linux V 1 (2.6.24.7), V 2 (2.6.26.7), and V 3 (2.6.27.4). The validation can be divided into parts

corresponding to different subsystems [81]. Here, we present the part that corresponds to the

devpts file system.

The graphs are call graphs relevant to the mutex locking and unlocking of the devpts file

system [65]. Each graph G is defined as follows:

1. R = RCG(mutex lock, mutex unlock),

2. P1 = {f |f ∈ R and name(f) starts with “devpts′′ }.
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Table 6.4 Three Linux Test Cases
Linux Version number of RCG nodes number of DEVPTS Roots DEVPTS Graph

Nodes Edges

V1:2.6.24.7 9134 6 166 271
V2:2.6.26.7 9792 6 187 299
V3:2.6.27.4 12694 6 197 314

Table 6.5 Linux experiment: difference sets produced by the Gemini algo-
rithm

Two Case III Case II Case I
Versions

|N1D| |N2I | |N1X | |N1D| |N2I | |N1X | |N1D| |N2I | |N1X |
V1 vs. V2 41 62 71 38 59 64 4 25 38
V2 vs. V3 34 44 61 30 40 58 1 11 26
V1 vs. V3 57 88 74 49 80 66 5 36 48

3. P2 = {f |f ∈ Roots(R) and CG(f) ∩ P1 6= Ø}.

4. G = CG(P2) ∩R.

Let S denote a set of functions. RCG(S) denotes the Reverse Call Graph with S as leaves,

CG(S) denotes the Call Graph with S as roots, and Roots(S) denotes roots of RCG(S).

Let G1, G2, and G3 be the devpts graphs for Linux versions V 1, V 2, and V 3 respectively.

The Tables 6.5 and 6.6 report the evolutionary change as the graph difference sets N1D(A),

N2I(A), and N1x(A) between G1 and G2 and G2 and G3. A is used to denote an alignment

produced by the graph alignment algorithms the Gemini [29] or the 2DOM [36]. Since N1X(A)

and N2X(A) have the same cardinality, we have reported only |N1X(A)| and not |N2X(A)| in

the tables.

The Gemini and the 2DOM algorithms produce suboptimal alignments, which means the

algorithms will produce a bigger size difference than the evolution distance between a pair of

graphs.

Table 6.6 Linux experiment: difference sets produced by the 2DOM algo-
rithm

Two Case III Case II Case I
Versions

|N1D| |N2I | |N1X | |N1D| |N2I | |N1X | |N1D| |N2I | |N1X |
V1 vs. V2 0 21 130 0 21 65 0 21 48
V2 vs. V3 0 10 63 0 10 67 0 10 29
V1 vs. V3 0 31 140 0 31 92 0 31 59
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For each algorithm, we show three cases: Case I where the complete C function name is

used as the label, Case II where the first two characters of a C function name are used as the

label, Case III where the first character of a C function name is used as the label. In Case I

the label is unique for each function node and it is increasingly less unique in going from the

first to the third case. Note that the choice of non-unique labels is for demonstration purposes.

The unique label serves as a strong clue for the alignment strategy used by Gemini but not

for the 2DOM algorithm. Between two versions of Linux, as a general rule, functions with the

same name are typically the same functions and should be aligned. However, we found a few

exceptions to this rule using a graph alignment visualization (GAV) mechanism to examine

the alignment produced by the Gemini in Case I. An example of this exception is discussed

later.

The more distinctive the node labels are, the easier it becomes to align nodes using a label

as a property to match nodes. The results for the Gemini and 2DOM algorithms shown in

Tables 6.5 and 6.6.

The matching strategies used by 2DOM and Gemini are interestingly different. The Gemini

algorithm places priority on matching labels. Thus, in the case where nodes have unique labels,

Gemini does a one-to-one matching of all nodes except the ones that are deleted or inserted.

For example, in differencing the versions V 1 and V 2 Gemini reports that 25 nodes are inserted

and 4 nodes are deleted, and the difference 21 matches with the difference in the number of

nodes between the two versions.

Unlike Gemini, the 2DOM algorithm places less priority on matching nodes with the same

labels. It does not match nodes with the same unique labels if their connectivity to other

nodes differs significantly. It tries to match nodes with the same degree of connectivity. In

this Linux case study, the Gemini is expected to perform better than the 2DOM because it is

correct to match the function with same names for the most part. 2DOM tries to match every

node of the smaller graph with nodes of the larger graph. This is reflected in results by the

fact that the 2DOM always reports zero for the number of deleted nodes.

The Gemini algorithm is highly accurate if it can take advantage of the uniquely matching
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Table 6.7 Linux experiment: accuracy analysis of the 2DOM algorithm for
differencing graphs from Linux

Two Case III Case II Case I

Versions

V1 vs. V2 4% 22% 71%

V2 vs. V3 11% 16% 89%

V1 vs. V3 2% 10% 71%

Table 6.8 Linux experiment: accuracy analysis of the Gemini algorithm
for differencing graphs from Linux

Two Case III Case II Case I

Versions

V1 vs. V2 17% 22% 92%

V2 vs. V3 16% 19% 89%

V1 vs. V3 13% 22% 92%

labels. However, its accuracy degrades significantly if the nodes in two graphs do not have

uniquely matching labels, as in cases II and III which use non-unique labels for nodes. In-

creasingly more spurious changes are reported as we go from Case I to III. In case of V 1 vs.

V 2, the values reported for |N1X | are 38, 64, and 71 for cases I, II, and III respectively. Thus,

compared to Case I, Cases II and III report 68% and 86% more differences respectively.

The accuracy of the three algorithms is shown in Tables 6.8, 6.7, and 6.9. In the tables,

the accuracy is calculated where DO is defined as the best alignment we could find manually.

Table 6.9 Linux experiment: accuracy analysis of the MST algorithm for
differencing graphs from Linux

Two Case III Case II Case I

Versions

V1 vs. V2 95% 98% 95%

V2 vs. V3 86% 89% 93%

V1 vs. V3 86% 99% 96%
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Table 6.10 MST parameter experiment: accuracy analysis - graphs with
degree 15, 40 attributes, 5% change, and 3 minimal signatures
per node in G1

Nodes 1000 2000 3000

Gemini 4% 3% 3%

2DOM 45% 15% 8%

MST 98% 93% 96%

6.3 Improving Performance

The MST-based graph alignment algorithm is highly accurate. However, it is slower than

the 2DOM and Gemini algorithms. There are several possibilities for heuristics that can be

used to improve the speed of the MST-based graph alignment algorithm. One heuristic is the

generation and use of only some of the common minimal signatures.

The Co-MST algorithm takes a parameter that describes the number of minimal signatures

to generate per node in G1. In general, a higher parameter value will give higher accuracy but

require more time. Here we describe an experiment where the parameter value is 3.

In this experiment the average degree is 15, the number of attributes is 40, DT is 5% of

the total nodes in G1 and G2, and the size of the graphs range from 1000 to 3000 nodes. The

graphs with 1000 nodes had over 300 minimal signatures per node. Due to resource constraints

we could not compute the total number of minimal signatures in the larger graphs.

Generating 3 minimal signatures per node and doing the alignment for the graphs with

3000 nodes took an average of 16 seconds. A comparison of the accuracy of the MST-based

algorithm when the parameter value is 3 with the 2DOM and Gemini algorithms is given in

Table 6.10. The accuracy remained nearly optimal when only 3 minimal signatures per node

were generated.

6.4 Summary of the Experimental Study

We also have found that minimal signatures as node properties for alignment provide high

node coverage and a high percentage of unique matchings. Throughout our experiments,
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both 2DOM and Gemini were faster than our algorithm. However, our algorithm was much

more accurate. The accuracy of our algorithm was nearly optimal in all the experiments.

Furthermore, only a small portion of the minimal signatures were needed for a highly accurate

alignment.
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CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Graph-based software differencing offers a powerful abstraction for computing evolutionary

change. A key issue in software evolution analysis is the accurate computation of evolution-

ary change. This dissertation describes a framework that leads to a rigorous definition of

evolutionary change.

We define a notion of graph difference for capturing evolutionary change. The notion is

novel and focuses on the effect of graph transformations and not the length. It is shown that

evolutionary change can be characterized intrinsically without referring to transformations.

This intrinsic characterization is developed by introducing the concept of maximum Boundary

Edge Preserving (BEP) alignment. The maximum BEP alignment is introduced as a refinement

of the well-known notion of the maximum common induced subgraph alignment.

Maximum BEP alignment is a new notion of optimality of graph alignments. We give

examples to show that the new notion of optimality is different from other notions of optimality

reported in the literature.

The precise connection to graph alignment established in this work opens up new oppor-

tunities to develop accurate and efficient software differencing algorithms. The rich variety of

existing graph alignment algorithms can be explored for computing evolutionary change.

Based on the mathematical foundation of evolutionary change, we have designed a frame-

work for evaluation of differencing algorithms. The framework includes a testbed, an accuracy

metric, and a graph alignment visualization (GAV) mechanism.

The testbed is used to create sample graphs with known maximum BEP alignment, speci-

fied graph characteristics, and a specified percentage of different types of changes. It would be

valuable to have such a testbed for extensive and systematic evaluation of algorithms for com-



www.manaraa.com

66

puting evolutionary change. Many heuristic graph differencing algorithms have been developed

for software engineering, image analysis, VLSI circuit differencing, and other applications.

Each scenario created with the testbed is based on variations in properties of graphs such

as the number of nodes, the number of attributes, and the average degree of connectivity per

node. The graph testbed enables experimentation with different scenarios. By characteriz-

ing applications in terms of typical properties of the graphs pertaining to them, application

scientists can use the testbed to do a rigorous experimental study to select a proper graph

differencing algorithm.

An accuracy metric is important for evaluating graph differencing algorithms. In this

dissertation an accuracy metric is designed based on our notion of optimality of alignment.

The proposed accuracy metric is designed to measure the degree to which an alignment is

inaccurate, that is the degree to which it reports spurious differences. The values produced

by the metric could be said to represent the efficiency of software evolution analyses when the

resources necessary to perform the analyses are closely related to the size of the differences

reported.

Coupled with the graph testbed, we describe a graph alignment visualization (GAV) mech-

anism. Using the GAV mechanism to view the alignment results of function call graphs from

two versions of Linux, we were able to improve an alignment produced by the Gemini.

The cases we spotted through GAV for improving the alignment turned out to be the

ones where a function called f in the version V 1 is split into two functions called g and g1

in the version V 2. The Gemini matched f with g based on the function name and the GAV

observation showed that it made more sense to match f from V 1 with g1 from V 2 and treat

the g from V 2 as a new function.

This dissertation introduces the notion of minimal signatures and a new data structure

called the minimal signature tree (MST) for graphs. The graphs are assumed to be attributed,

directed, and acyclic. The MST generalizes the suffix tree data structure. Similar to use of the

suffix tree for designing efficient string algorithms, the MST can be used for designing efficient

graph analysis algorithms.
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We present a MST based graph differencing algorithm. The Co-MST, a combined MST

for graphs G1 and G2 is defined as an efficient way to align the two graphs and compute

the difference. The Co-MST provides an optimized mechanism to compute only the minimal

signatures common to G1 and G2 - these are the signatures useful for graph alignment.

We present an experimental study comparing the MST algorithm with two graph differenc-

ing algorithms, 2DOM and Gemini. The 2DOM algorithm is recommended in a survey article

and a proprietary version of Gemini is used in industry for comparison of VLSI circuits.

The comparison shows that the accuracy of the MST based algorithm is significantly supe-

rior. The accuracy of the MST based algorithm is nearly optimal in all our experiments. It is

the first extensive experimental study involving large graphs with up to ten thousand nodes.

We have also evaluated the algorithms in a example of computing evolutionary change

in Linux. The results reflect interesting differences of accuracy resulting from the different

matching strategies used by the algorithms.

In the Linux example, the Gemini algorithm performs well if it can take advantage of the

uniquely matching labels. The case study is also designed to observe the accuracy if the node

labels are not unique. Gemini and 2DOM accuracy decrease significantly if nodes do not have

unique labels. The accuracy of the MST algorithm remains nearly optimal.

In fields such as software engineering and bioinformatics, accurate graph differencing is

critical to uncover and harness the knowledge that can be extracted from evolutionary change.

A rigorous framework for accuracy analysis provides the necessary foundation to develop and

select highly accurate graph differencing algorithms for important applications.

With some exceptions as discussed in the experimental study section, the MST based

algorithm is highly accurate and fast enough to process fairly quickly graphs with thousands

of nodes. With the foundation of this new data structure and an efficient and accurate graph

differencing algorithm based on it, important research can be pursued in multiple directions.

The applications of the differencing algorithm can be researched to engineer new advance

software engineering, bioinformatics and other fields where graph differencing has a critical

role to play. Also, the application of MST to evolve other graph algorithms can be explored.
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APPENDIX

ILLUSTRATIONS OF APPLICATIONS

Evolutionary change is useful for several software evolution analyses. A few examples are

briefly described and illustrated in this appendix.

Figure A.1 illustrates the use of graph differences for estimating costs. Software engineering

can benefit from accurate estimation of software evolution costs [59, 48]. The costs can be many

different types of resources. Given a graph G1 representing a system specification S1 and a

graph G2 representing a proposed system specification S2, the costs associated with evolving a

system can be estimated by analyzing the topology of the graph differences [7, 39, 44, 59, 75].

For example, one possible way of cost estimation using the topology of the graph differences

is as follows. Given an effect (EF1,EF2) the subgraph in G1 induced by EF1 and the subgraph

in G2 induced by EF2 could represent respectively, the portion of the system that needs to be

analyzed before evolution and the portion of the system that will need to be created during

the evolution, validated, and tested afterwards. Since the complexity of the graphs can be

important to analyzing the costs of maintaining or evolving software [75], measurements of

the complexity of the induced subgraphs could be used in a method to estimate the costs of

software evolution and software evolution analyses.

Figure A.2 illustrates the use of graph differences for clone detection. Clone detection

methods typically find pairs of similar pieces of code [54]. Several notions of code similarity

exist in literature [6, 106]. However, once a pair of similar pieces of code is found we would

like to know what is the clone. The clone can be described as what is not different.

Figure A.3 illustrates the use of graph differences for merging two softwares. We may

want to merge two softwares to combine products or handle the case when multiple developers
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Software Evolution Analysis
(Cost Estimation)

• Given system specification S1 and a proposed 
specification S2

– How do we estimate the cost of evolving the system?

S2

T2

Cost ModelSpecifications & Differences Resource Costs

$
Topology
Of Graph
Difference

Memory

S1

T1

Figure A.1 Use of Differencing for Cost Estimation

Software Evolution Analysis
(Clone Detection)

• Given two similar pieces of code
– What is the clone (i.e. what is not different)?

C

C

A

A

B

B

Graph of Code S1 Graph of Code S2

C

C
A

A

B
D

Figure A.2 Use of Differencing for Clone Detection
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Software Evolution Analysis
(Software Merging)

• When two systems evolve from a single system
– What is necessary to merge them?

Original
System

Evolved
Systems

Possible
Merged
Systems

Differences Actual
Assumptions

Merged
System

S

S1

S2

A

B

C

D

Possible
Assumptions

D1=S-S1

D2=S-S2

X(D)

Y(D)

X(D)=T

Y(D)=F

B

Figure A.3 Use of Differencing for System Merging

simultaneously have worked on the same software. If we assume that systems S1 and S2

evolved from a common ancestor S, then the differences S1-S and S2-S are useful in merging

S1 with S2. In order to do the merge, it is also necessary to make some assumptions about the

differences [79].
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